Umair Nisar, Florian Klein, Claudia Pfeifer, Margret Wohlfahrt-Mehrens, Markus Hölzle, Peter Axmann
{"title":"利用相关拉曼-SEM 显微镜阐明 LiNi0.5Mn1.5O4 阴极材料中次生相的性质","authors":"Umair Nisar, Florian Klein, Claudia Pfeifer, Margret Wohlfahrt-Mehrens, Markus Hölzle, Peter Axmann","doi":"10.1016/j.ensm.2024.103905","DOIUrl":null,"url":null,"abstract":"LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) is a promising next-generation cathode material for lithium-ion batteries (LIBs) due to its high-energy and high-power density. However, its commercial adoption is hindered by the unstable LNMO/electrolyte interface due to high operating voltages and structural degradation arising from Jahn-Teller distortion and metal-ion dissolution resulting in poor cycling stability. Additionally, the high-temperature calcination beyond 700°C often results in secondary phases such as rock salt NiO, Li<sub>1-x</sub>Ni<sub>x</sub>O, Ni<sub>6</sub>MnO<sub>8</sub> or Li<sub>2</sub>MnO<sub>3</sub>, whose precise chemical compositions and their influence on electrochemical performance remain unclear. Traditional analytical techniques such as X-ray diffraction (XRD) or neutron diffraction face challenges in resolving these secondary phases due to low phase fractions and overlapping reflections with the LNMO phase. Here, we address these challenges using correlative Raman-Scanning electron microscopy (Raman-SEM) to characterize secondary phases in LNMO materials that were synthesized under various synthesis conditions and evaluate their impact on the electrochemical performance. Our results reveal the synthesis-dependent emergence of three distinct secondary phases in LNMO materials synthesized at 1000°C, a phenomenon that, to our knowledge, has not been previously reported. Specifically, LNMO synthesized at 900°C shows the coexistence of Ni<sub>6</sub>MnO<sub>8</sub> and Li<sub>2</sub>MnO<sub>3</sub> phases, while synthesized at 1000°C also exhibits a Mn<sub>3</sub>O<sub>4</sub> phase. Furthermore, an increased amount of these secondary phases in LNMO led to a lower discharge capacity due to their electrochemical inactive nature. However, these phases do not affect the rate capability or the long-term cycling performance of the LNMO materials. These insights are crucial for advancing the development of LNMO cathode materials for next-generation LIBs.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"5 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the Nature of Secondary Phases in LiNi0.5Mn1.5O4 Cathode Materials using Correlative Raman-SEM Microscopy\",\"authors\":\"Umair Nisar, Florian Klein, Claudia Pfeifer, Margret Wohlfahrt-Mehrens, Markus Hölzle, Peter Axmann\",\"doi\":\"10.1016/j.ensm.2024.103905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) is a promising next-generation cathode material for lithium-ion batteries (LIBs) due to its high-energy and high-power density. However, its commercial adoption is hindered by the unstable LNMO/electrolyte interface due to high operating voltages and structural degradation arising from Jahn-Teller distortion and metal-ion dissolution resulting in poor cycling stability. Additionally, the high-temperature calcination beyond 700°C often results in secondary phases such as rock salt NiO, Li<sub>1-x</sub>Ni<sub>x</sub>O, Ni<sub>6</sub>MnO<sub>8</sub> or Li<sub>2</sub>MnO<sub>3</sub>, whose precise chemical compositions and their influence on electrochemical performance remain unclear. Traditional analytical techniques such as X-ray diffraction (XRD) or neutron diffraction face challenges in resolving these secondary phases due to low phase fractions and overlapping reflections with the LNMO phase. Here, we address these challenges using correlative Raman-Scanning electron microscopy (Raman-SEM) to characterize secondary phases in LNMO materials that were synthesized under various synthesis conditions and evaluate their impact on the electrochemical performance. Our results reveal the synthesis-dependent emergence of three distinct secondary phases in LNMO materials synthesized at 1000°C, a phenomenon that, to our knowledge, has not been previously reported. Specifically, LNMO synthesized at 900°C shows the coexistence of Ni<sub>6</sub>MnO<sub>8</sub> and Li<sub>2</sub>MnO<sub>3</sub> phases, while synthesized at 1000°C also exhibits a Mn<sub>3</sub>O<sub>4</sub> phase. Furthermore, an increased amount of these secondary phases in LNMO led to a lower discharge capacity due to their electrochemical inactive nature. However, these phases do not affect the rate capability or the long-term cycling performance of the LNMO materials. These insights are crucial for advancing the development of LNMO cathode materials for next-generation LIBs.\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ensm.2024.103905\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103905","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Elucidating the Nature of Secondary Phases in LiNi0.5Mn1.5O4 Cathode Materials using Correlative Raman-SEM Microscopy
LiNi0.5Mn1.5O4 (LNMO) is a promising next-generation cathode material for lithium-ion batteries (LIBs) due to its high-energy and high-power density. However, its commercial adoption is hindered by the unstable LNMO/electrolyte interface due to high operating voltages and structural degradation arising from Jahn-Teller distortion and metal-ion dissolution resulting in poor cycling stability. Additionally, the high-temperature calcination beyond 700°C often results in secondary phases such as rock salt NiO, Li1-xNixO, Ni6MnO8 or Li2MnO3, whose precise chemical compositions and their influence on electrochemical performance remain unclear. Traditional analytical techniques such as X-ray diffraction (XRD) or neutron diffraction face challenges in resolving these secondary phases due to low phase fractions and overlapping reflections with the LNMO phase. Here, we address these challenges using correlative Raman-Scanning electron microscopy (Raman-SEM) to characterize secondary phases in LNMO materials that were synthesized under various synthesis conditions and evaluate their impact on the electrochemical performance. Our results reveal the synthesis-dependent emergence of three distinct secondary phases in LNMO materials synthesized at 1000°C, a phenomenon that, to our knowledge, has not been previously reported. Specifically, LNMO synthesized at 900°C shows the coexistence of Ni6MnO8 and Li2MnO3 phases, while synthesized at 1000°C also exhibits a Mn3O4 phase. Furthermore, an increased amount of these secondary phases in LNMO led to a lower discharge capacity due to their electrochemical inactive nature. However, these phases do not affect the rate capability or the long-term cycling performance of the LNMO materials. These insights are crucial for advancing the development of LNMO cathode materials for next-generation LIBs.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.