Biqin Dong , Chenxi Liu , Eskinder Desta Shumuye , Yuanyuan Zhang , Hui Zhong , Guohao Fang
{"title":"纳米二氧化硅对工程土工聚合物复合材料机械性能和微观结构的影响","authors":"Biqin Dong , Chenxi Liu , Eskinder Desta Shumuye , Yuanyuan Zhang , Hui Zhong , Guohao Fang","doi":"10.1016/j.cemconcomp.2024.105849","DOIUrl":null,"url":null,"abstract":"<div><div>Engineered geopolymer composites (EGC) are promising alternatives to highly ductile cement-based composites, whereas effectively balancing the strength and ductility of most developed EGC mixes is challenging. This study systematically evaluated the feasibility of incorporating nano-silica (NS) particles to address the problem of balancing strength and ductility in EGC, aiming to develop EGC with extraordinary mechanical properties. The relationship between microstructure and mechanical properties of NS-EGC was studied via X-ray computed tomography (XCT) and backscattered electron microscopy (BSEM) tests, to gain an in-depth understanding of the obtained properties. Results indicate that NS-EGC mixes with superior compressive and tensile behaviour were successfully fabricated based on micromechanics design theory. The optimal NS content and particle size were 1 % and 15 nm, where the resulting composite outperformed all proposed EGC in terms of compressive strength (94 MPa), tensile strength (9.17 MPa) and tensile strain capacity (9.06 %). The mechanical properties of NS-EGC were strongly dependent on the pore structure, fibre orientation and fibre dispersion, where these microstructural effects can be modified by NS. This study provides a new approach to optimising the strength-ductility balance of EGC through nano-silica incorporation, offering the potential for broadening the application of EGC in high-performance structural materials.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"156 ","pages":"Article 105849"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of nano-silica on mechanical properties and microstructure of engineered geopolymer composites\",\"authors\":\"Biqin Dong , Chenxi Liu , Eskinder Desta Shumuye , Yuanyuan Zhang , Hui Zhong , Guohao Fang\",\"doi\":\"10.1016/j.cemconcomp.2024.105849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Engineered geopolymer composites (EGC) are promising alternatives to highly ductile cement-based composites, whereas effectively balancing the strength and ductility of most developed EGC mixes is challenging. This study systematically evaluated the feasibility of incorporating nano-silica (NS) particles to address the problem of balancing strength and ductility in EGC, aiming to develop EGC with extraordinary mechanical properties. The relationship between microstructure and mechanical properties of NS-EGC was studied via X-ray computed tomography (XCT) and backscattered electron microscopy (BSEM) tests, to gain an in-depth understanding of the obtained properties. Results indicate that NS-EGC mixes with superior compressive and tensile behaviour were successfully fabricated based on micromechanics design theory. The optimal NS content and particle size were 1 % and 15 nm, where the resulting composite outperformed all proposed EGC in terms of compressive strength (94 MPa), tensile strength (9.17 MPa) and tensile strain capacity (9.06 %). The mechanical properties of NS-EGC were strongly dependent on the pore structure, fibre orientation and fibre dispersion, where these microstructural effects can be modified by NS. This study provides a new approach to optimising the strength-ductility balance of EGC through nano-silica incorporation, offering the potential for broadening the application of EGC in high-performance structural materials.</div></div>\",\"PeriodicalId\":9865,\"journal\":{\"name\":\"Cement & concrete composites\",\"volume\":\"156 \",\"pages\":\"Article 105849\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement & concrete composites\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958946524004220\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524004220","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Effect of nano-silica on mechanical properties and microstructure of engineered geopolymer composites
Engineered geopolymer composites (EGC) are promising alternatives to highly ductile cement-based composites, whereas effectively balancing the strength and ductility of most developed EGC mixes is challenging. This study systematically evaluated the feasibility of incorporating nano-silica (NS) particles to address the problem of balancing strength and ductility in EGC, aiming to develop EGC with extraordinary mechanical properties. The relationship between microstructure and mechanical properties of NS-EGC was studied via X-ray computed tomography (XCT) and backscattered electron microscopy (BSEM) tests, to gain an in-depth understanding of the obtained properties. Results indicate that NS-EGC mixes with superior compressive and tensile behaviour were successfully fabricated based on micromechanics design theory. The optimal NS content and particle size were 1 % and 15 nm, where the resulting composite outperformed all proposed EGC in terms of compressive strength (94 MPa), tensile strength (9.17 MPa) and tensile strain capacity (9.06 %). The mechanical properties of NS-EGC were strongly dependent on the pore structure, fibre orientation and fibre dispersion, where these microstructural effects can be modified by NS. This study provides a new approach to optimising the strength-ductility balance of EGC through nano-silica incorporation, offering the potential for broadening the application of EGC in high-performance structural materials.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.