Mengxue Tong, Yanli Zhang, Mei Li, Qi Wang, Xiao Tian, Dan Zhang, Aoqi Ge, Wei Song, Xin Xiong, Yinong You, Yongjang Xu, Yihua Huang, Xin Yang, Xinming Wang
{"title":"在船上测量各种运行条件下内河船舶排放的有机蒸汽","authors":"Mengxue Tong, Yanli Zhang, Mei Li, Qi Wang, Xiao Tian, Dan Zhang, Aoqi Ge, Wei Song, Xin Xiong, Yinong You, Yongjang Xu, Yihua Huang, Xin Yang, Xinming Wang","doi":"10.1016/j.envpol.2024.125332","DOIUrl":null,"url":null,"abstract":"The emission factors and characteristics of pollutants from river vessels are critical for understanding the environmental impact of ship emissions, particularly in inland waterways. However, research gaps remain regarding emissions of volatile organic compounds (VOCs) and intermediate-volatility organic compounds (IVOCs) from river vessels. In this study, we collected and analyzed organic vapor emissions, including non-methane hydrocarbon (NMHCs), oxygenated volatile organic compounds (OVOCs) and IVOCs, from three river vessels under different operating conditions. The results show that the average emission factors of NMHCs, and IVOCs from river vessels are significantly higher than those from ocean-going vessels. Inland waterways’ proximity to residential areas increases the risk of pollutant transport to urban environments, heightening the importance of managing river vessel emissions. Notably, older auxiliary engines displayed higher organic vapor emissions compared to main engines, underscoring the need for better control measures for aging engines. By analyzing the emission characteristics of organic vapors from river vessels, it was found that, unlike other pollution sources where C12 n-alkanes are the major contributors of IVOCs, the contributions of C12-C15 n-alkanes in river vessel exhaust are similar, with C14 n-alkane having the highest contribution. OVOCs constituted more than 50% to ozone formation potentials of organic vapors, while IVOCs were responsible for over 90% of the secondary organic aerosol (SOA) formation. Given these findings, targeted efforts to reduce OVOCs and IVOCs emissions from river vessels should prioritized to mitigate their environmental impact.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"25 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Onboard measurements of organic vapor emissions from river vessels under various operational conditions\",\"authors\":\"Mengxue Tong, Yanli Zhang, Mei Li, Qi Wang, Xiao Tian, Dan Zhang, Aoqi Ge, Wei Song, Xin Xiong, Yinong You, Yongjang Xu, Yihua Huang, Xin Yang, Xinming Wang\",\"doi\":\"10.1016/j.envpol.2024.125332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emission factors and characteristics of pollutants from river vessels are critical for understanding the environmental impact of ship emissions, particularly in inland waterways. However, research gaps remain regarding emissions of volatile organic compounds (VOCs) and intermediate-volatility organic compounds (IVOCs) from river vessels. In this study, we collected and analyzed organic vapor emissions, including non-methane hydrocarbon (NMHCs), oxygenated volatile organic compounds (OVOCs) and IVOCs, from three river vessels under different operating conditions. The results show that the average emission factors of NMHCs, and IVOCs from river vessels are significantly higher than those from ocean-going vessels. Inland waterways’ proximity to residential areas increases the risk of pollutant transport to urban environments, heightening the importance of managing river vessel emissions. Notably, older auxiliary engines displayed higher organic vapor emissions compared to main engines, underscoring the need for better control measures for aging engines. By analyzing the emission characteristics of organic vapors from river vessels, it was found that, unlike other pollution sources where C12 n-alkanes are the major contributors of IVOCs, the contributions of C12-C15 n-alkanes in river vessel exhaust are similar, with C14 n-alkane having the highest contribution. OVOCs constituted more than 50% to ozone formation potentials of organic vapors, while IVOCs were responsible for over 90% of the secondary organic aerosol (SOA) formation. Given these findings, targeted efforts to reduce OVOCs and IVOCs emissions from river vessels should prioritized to mitigate their environmental impact.\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.envpol.2024.125332\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.125332","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Onboard measurements of organic vapor emissions from river vessels under various operational conditions
The emission factors and characteristics of pollutants from river vessels are critical for understanding the environmental impact of ship emissions, particularly in inland waterways. However, research gaps remain regarding emissions of volatile organic compounds (VOCs) and intermediate-volatility organic compounds (IVOCs) from river vessels. In this study, we collected and analyzed organic vapor emissions, including non-methane hydrocarbon (NMHCs), oxygenated volatile organic compounds (OVOCs) and IVOCs, from three river vessels under different operating conditions. The results show that the average emission factors of NMHCs, and IVOCs from river vessels are significantly higher than those from ocean-going vessels. Inland waterways’ proximity to residential areas increases the risk of pollutant transport to urban environments, heightening the importance of managing river vessel emissions. Notably, older auxiliary engines displayed higher organic vapor emissions compared to main engines, underscoring the need for better control measures for aging engines. By analyzing the emission characteristics of organic vapors from river vessels, it was found that, unlike other pollution sources where C12 n-alkanes are the major contributors of IVOCs, the contributions of C12-C15 n-alkanes in river vessel exhaust are similar, with C14 n-alkane having the highest contribution. OVOCs constituted more than 50% to ozone formation potentials of organic vapors, while IVOCs were responsible for over 90% of the secondary organic aerosol (SOA) formation. Given these findings, targeted efforts to reduce OVOCs and IVOCs emissions from river vessels should prioritized to mitigate their environmental impact.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.