Savana Denton, Tyson Raper, Darrin Dodds, Chris Main, Lori Duncan, Thomas Mueller
{"title":"棉花的叶绿素伤害,I:航空反射数据、作物伤害和产量","authors":"Savana Denton, Tyson Raper, Darrin Dodds, Chris Main, Lori Duncan, Thomas Mueller","doi":"10.1002/agj2.21698","DOIUrl":null,"url":null,"abstract":"<p>Synthetic auxin herbicide movement onto sensitive cotton (<i>Gossypium hirsutum</i> L.) cultivars has impacted many US cotton hectares. The spatial scope and severity of auxin damage in-season is typically estimated by an agronomist. The use of remote sensing technology has the potential to objectively quantify the spatial scope and severity of auxin damage. Experiments were conducted in 2019, 2020, and 2021 in Grand Junction, TN, to determine: (1) the effect of reflectance data collection timing; (2) the effect of auxin exposure timing; (3) the value of near infrared and red-edge (RE) reflectance versus reflectance within the visible spectrum data; and (4) if/how visual injury relates to aerial reflectance data. Applications of 2,4-D or dicamba were made to susceptible cotton cultivars at 1X, 1/4X, 1/16X, 1/64X, 1/256X, and 1/1024X rates at either matchhead square (MHS) or 2 weeks after first bloom (FB+2WK). Non-treated controls were also included for each application timing. Aerial reflectance data were collected 7, 14, 21, and 28 days after application. Unsupervised classification of images into pixels with and without vegetation did not increase correlations between vegetation indices (VIs) and application rate. Although Vis, which generated the strongest correlations with application rate, visual injury, and relative lint yield, were generally RE based, similar correlations were also noted with visible spectrum VIs. Correlations were greater when auxin injury occurred at MHS than FB+2WK. Results suggest reflectance measured within the visible spectrum can quantify the scope and severity of auxin injury if the injury occurs early during the growing season.</p>","PeriodicalId":7522,"journal":{"name":"Agronomy Journal","volume":"116 6","pages":"2952-2966"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agj2.21698","citationCount":"0","resultStr":"{\"title\":\"Auxin injury on cotton, I: Aerial reflectance data, crop injury, and yield\",\"authors\":\"Savana Denton, Tyson Raper, Darrin Dodds, Chris Main, Lori Duncan, Thomas Mueller\",\"doi\":\"10.1002/agj2.21698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Synthetic auxin herbicide movement onto sensitive cotton (<i>Gossypium hirsutum</i> L.) cultivars has impacted many US cotton hectares. The spatial scope and severity of auxin damage in-season is typically estimated by an agronomist. The use of remote sensing technology has the potential to objectively quantify the spatial scope and severity of auxin damage. Experiments were conducted in 2019, 2020, and 2021 in Grand Junction, TN, to determine: (1) the effect of reflectance data collection timing; (2) the effect of auxin exposure timing; (3) the value of near infrared and red-edge (RE) reflectance versus reflectance within the visible spectrum data; and (4) if/how visual injury relates to aerial reflectance data. Applications of 2,4-D or dicamba were made to susceptible cotton cultivars at 1X, 1/4X, 1/16X, 1/64X, 1/256X, and 1/1024X rates at either matchhead square (MHS) or 2 weeks after first bloom (FB+2WK). Non-treated controls were also included for each application timing. Aerial reflectance data were collected 7, 14, 21, and 28 days after application. Unsupervised classification of images into pixels with and without vegetation did not increase correlations between vegetation indices (VIs) and application rate. Although Vis, which generated the strongest correlations with application rate, visual injury, and relative lint yield, were generally RE based, similar correlations were also noted with visible spectrum VIs. Correlations were greater when auxin injury occurred at MHS than FB+2WK. Results suggest reflectance measured within the visible spectrum can quantify the scope and severity of auxin injury if the injury occurs early during the growing season.</p>\",\"PeriodicalId\":7522,\"journal\":{\"name\":\"Agronomy Journal\",\"volume\":\"116 6\",\"pages\":\"2952-2966\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agj2.21698\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21698\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21698","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Auxin injury on cotton, I: Aerial reflectance data, crop injury, and yield
Synthetic auxin herbicide movement onto sensitive cotton (Gossypium hirsutum L.) cultivars has impacted many US cotton hectares. The spatial scope and severity of auxin damage in-season is typically estimated by an agronomist. The use of remote sensing technology has the potential to objectively quantify the spatial scope and severity of auxin damage. Experiments were conducted in 2019, 2020, and 2021 in Grand Junction, TN, to determine: (1) the effect of reflectance data collection timing; (2) the effect of auxin exposure timing; (3) the value of near infrared and red-edge (RE) reflectance versus reflectance within the visible spectrum data; and (4) if/how visual injury relates to aerial reflectance data. Applications of 2,4-D or dicamba were made to susceptible cotton cultivars at 1X, 1/4X, 1/16X, 1/64X, 1/256X, and 1/1024X rates at either matchhead square (MHS) or 2 weeks after first bloom (FB+2WK). Non-treated controls were also included for each application timing. Aerial reflectance data were collected 7, 14, 21, and 28 days after application. Unsupervised classification of images into pixels with and without vegetation did not increase correlations between vegetation indices (VIs) and application rate. Although Vis, which generated the strongest correlations with application rate, visual injury, and relative lint yield, were generally RE based, similar correlations were also noted with visible spectrum VIs. Correlations were greater when auxin injury occurred at MHS than FB+2WK. Results suggest reflectance measured within the visible spectrum can quantify the scope and severity of auxin injury if the injury occurs early during the growing season.
期刊介绍:
After critical review and approval by the editorial board, AJ publishes articles reporting research findings in soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture.
Notes are published about apparatus, observations, and experimental techniques. Observations usually are limited to studies and reports of unrepeatable phenomena or other unique circumstances. Review and interpretation papers are also published, subject to standard review. Contributions to the Forum section deal with current agronomic issues and questions in brief, thought-provoking form. Such papers are reviewed by the editor in consultation with the editorial board.