Kiran Shahood Almas, Richard D. Ash, Richard J. Walker
{"title":"热沙漠风化对普通软玉中高亲硒元素的影响","authors":"Kiran Shahood Almas, Richard D. Ash, Richard J. Walker","doi":"10.1111/maps.14267","DOIUrl":null,"url":null,"abstract":"<p>Over 20,000 meteorites have been recovered from hot deserts. The effects of hot desert weathering upon highly siderophile elements (HSE) have been little studied. We have investigated the effects of neutral to mildly acidic leaching of three L6-type ordinary chondrites of different weathering grades on HSE concentrations and Re-Os isotopic systematics. We have characterized the bulk sample HSE patterns of these meteorites and conducted leaching experiments with progressively longer leaching times to determine the possible effects of long-term residence in a desert. The most weathered sample (NWA 14239) displayed greater HSE concentration homogeneity than the other samples and released lower quantities of HSEs during leaching. Water leaching was milder than acetic acid and did not significantly modify the Re-Os isotopic systematics of the residue relative to the bulk sample of NWA 869. Short-term leachates of the less weathered samples (Viñales and NWA 869) were characterized by low <sup>187</sup>Os/<sup>188</sup>Os ratios, indicating the preferential dissolution of early solar system–formed phases such as non-magnetic chondrules and matrix with low Re/Os that are no longer intact in the most weathered sample. Of the HSE, Pd is most resistant to both water and acetic acid leaching, with a maximum removal of ~5% Pd, while Re, Os, and Ir are most mobile with up to 40% removal.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 11","pages":"3072-3086"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14267","citationCount":"0","resultStr":"{\"title\":\"Effects of hot desert weathering on highly siderophile elements in ordinary chondrites\",\"authors\":\"Kiran Shahood Almas, Richard D. Ash, Richard J. Walker\",\"doi\":\"10.1111/maps.14267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Over 20,000 meteorites have been recovered from hot deserts. The effects of hot desert weathering upon highly siderophile elements (HSE) have been little studied. We have investigated the effects of neutral to mildly acidic leaching of three L6-type ordinary chondrites of different weathering grades on HSE concentrations and Re-Os isotopic systematics. We have characterized the bulk sample HSE patterns of these meteorites and conducted leaching experiments with progressively longer leaching times to determine the possible effects of long-term residence in a desert. The most weathered sample (NWA 14239) displayed greater HSE concentration homogeneity than the other samples and released lower quantities of HSEs during leaching. Water leaching was milder than acetic acid and did not significantly modify the Re-Os isotopic systematics of the residue relative to the bulk sample of NWA 869. Short-term leachates of the less weathered samples (Viñales and NWA 869) were characterized by low <sup>187</sup>Os/<sup>188</sup>Os ratios, indicating the preferential dissolution of early solar system–formed phases such as non-magnetic chondrules and matrix with low Re/Os that are no longer intact in the most weathered sample. Of the HSE, Pd is most resistant to both water and acetic acid leaching, with a maximum removal of ~5% Pd, while Re, Os, and Ir are most mobile with up to 40% removal.</p>\",\"PeriodicalId\":18555,\"journal\":{\"name\":\"Meteoritics & Planetary Science\",\"volume\":\"59 11\",\"pages\":\"3072-3086\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14267\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteoritics & Planetary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maps.14267\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14267","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Effects of hot desert weathering on highly siderophile elements in ordinary chondrites
Over 20,000 meteorites have been recovered from hot deserts. The effects of hot desert weathering upon highly siderophile elements (HSE) have been little studied. We have investigated the effects of neutral to mildly acidic leaching of three L6-type ordinary chondrites of different weathering grades on HSE concentrations and Re-Os isotopic systematics. We have characterized the bulk sample HSE patterns of these meteorites and conducted leaching experiments with progressively longer leaching times to determine the possible effects of long-term residence in a desert. The most weathered sample (NWA 14239) displayed greater HSE concentration homogeneity than the other samples and released lower quantities of HSEs during leaching. Water leaching was milder than acetic acid and did not significantly modify the Re-Os isotopic systematics of the residue relative to the bulk sample of NWA 869. Short-term leachates of the less weathered samples (Viñales and NWA 869) were characterized by low 187Os/188Os ratios, indicating the preferential dissolution of early solar system–formed phases such as non-magnetic chondrules and matrix with low Re/Os that are no longer intact in the most weathered sample. Of the HSE, Pd is most resistant to both water and acetic acid leaching, with a maximum removal of ~5% Pd, while Re, Os, and Ir are most mobile with up to 40% removal.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.