{"title":"通风期间仓库温度电缆布局优化模拟研究","authors":"Kaimin Yang, Fengjiao Chu, Yuancheng Wang, Xiaoqian Dong","doi":"10.1111/jfpe.14769","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The temperature data obtained from cables monitoring stored grain are crucial for real-time surveillance of grain storage and serve as a reference for processes such as ventilation. This study focuses on optimizing the arrangement of temperature cables within the warehouse and employing numerical simulations to analyze the variation in grain temperature during a 7-day cooling ventilation period. By comparing the predicted average temperature of bulk grain with the temperatures recorded by cable sensors, the study evaluates the potential benefits and cost implications of various cable layouts. The maximum difference in the average temperature between the monitoring temperature by cables and the predicted temperature in bulk grain was 0.70°C, and the root mean square error (RMSE) was 25.83% when the cables were arranged according to the national standard (National Standard of P.R. China, GB/T 26882.1-2011). The study further examines the impact of optimizing cable layout, including variations in horizontal spacing, on the RMSE. It was found that reducing cable spacing decreased the RMSE but necessitated an increased number of cables. Conversely, increasing cable spacing led to a decrease in the number of cables but resulted in a higher RMSE. Based on an optimized non-uniform layout with the less cables, which were inserted with dense cables near the wall and sparse cables in bulk grain, it was found that the RMSE was reduced to 22.23%, and the number of the cables was reduced by four cables compared to the national standard layout. The non-uniform layout was also verified for applicability in large-scale warehouses, showing a reduction of 26 cables compared to the national standard. The results demonstrated that the current cable layout of the national standard needs optimization, and that the optimization direction of the uniform layout does not guarantee economy and accuracy at the same time during the monitoring temperature in bulk grain. The non-uniform cable layout, with fewer cables and improved monitoring accuracy, presents a promising approach for practical application.</p>\n </div>","PeriodicalId":15932,"journal":{"name":"Journal of Food Process Engineering","volume":"47 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation Study on the Optimization of Temperature Cable Layout in a Warehouse During the Ventilation\",\"authors\":\"Kaimin Yang, Fengjiao Chu, Yuancheng Wang, Xiaoqian Dong\",\"doi\":\"10.1111/jfpe.14769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The temperature data obtained from cables monitoring stored grain are crucial for real-time surveillance of grain storage and serve as a reference for processes such as ventilation. This study focuses on optimizing the arrangement of temperature cables within the warehouse and employing numerical simulations to analyze the variation in grain temperature during a 7-day cooling ventilation period. By comparing the predicted average temperature of bulk grain with the temperatures recorded by cable sensors, the study evaluates the potential benefits and cost implications of various cable layouts. The maximum difference in the average temperature between the monitoring temperature by cables and the predicted temperature in bulk grain was 0.70°C, and the root mean square error (RMSE) was 25.83% when the cables were arranged according to the national standard (National Standard of P.R. China, GB/T 26882.1-2011). The study further examines the impact of optimizing cable layout, including variations in horizontal spacing, on the RMSE. It was found that reducing cable spacing decreased the RMSE but necessitated an increased number of cables. Conversely, increasing cable spacing led to a decrease in the number of cables but resulted in a higher RMSE. Based on an optimized non-uniform layout with the less cables, which were inserted with dense cables near the wall and sparse cables in bulk grain, it was found that the RMSE was reduced to 22.23%, and the number of the cables was reduced by four cables compared to the national standard layout. The non-uniform layout was also verified for applicability in large-scale warehouses, showing a reduction of 26 cables compared to the national standard. The results demonstrated that the current cable layout of the national standard needs optimization, and that the optimization direction of the uniform layout does not guarantee economy and accuracy at the same time during the monitoring temperature in bulk grain. The non-uniform cable layout, with fewer cables and improved monitoring accuracy, presents a promising approach for practical application.</p>\\n </div>\",\"PeriodicalId\":15932,\"journal\":{\"name\":\"Journal of Food Process Engineering\",\"volume\":\"47 11\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Process Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14769\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Process Engineering","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14769","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Simulation Study on the Optimization of Temperature Cable Layout in a Warehouse During the Ventilation
The temperature data obtained from cables monitoring stored grain are crucial for real-time surveillance of grain storage and serve as a reference for processes such as ventilation. This study focuses on optimizing the arrangement of temperature cables within the warehouse and employing numerical simulations to analyze the variation in grain temperature during a 7-day cooling ventilation period. By comparing the predicted average temperature of bulk grain with the temperatures recorded by cable sensors, the study evaluates the potential benefits and cost implications of various cable layouts. The maximum difference in the average temperature between the monitoring temperature by cables and the predicted temperature in bulk grain was 0.70°C, and the root mean square error (RMSE) was 25.83% when the cables were arranged according to the national standard (National Standard of P.R. China, GB/T 26882.1-2011). The study further examines the impact of optimizing cable layout, including variations in horizontal spacing, on the RMSE. It was found that reducing cable spacing decreased the RMSE but necessitated an increased number of cables. Conversely, increasing cable spacing led to a decrease in the number of cables but resulted in a higher RMSE. Based on an optimized non-uniform layout with the less cables, which were inserted with dense cables near the wall and sparse cables in bulk grain, it was found that the RMSE was reduced to 22.23%, and the number of the cables was reduced by four cables compared to the national standard layout. The non-uniform layout was also verified for applicability in large-scale warehouses, showing a reduction of 26 cables compared to the national standard. The results demonstrated that the current cable layout of the national standard needs optimization, and that the optimization direction of the uniform layout does not guarantee economy and accuracy at the same time during the monitoring temperature in bulk grain. The non-uniform cable layout, with fewer cables and improved monitoring accuracy, presents a promising approach for practical application.
期刊介绍:
This international research journal focuses on the engineering aspects of post-production handling, storage, processing, packaging, and distribution of food. Read by researchers, food and chemical engineers, and industry experts, this is the only international journal specifically devoted to the engineering aspects of food processing. Co-Editors M. Elena Castell-Perez and Rosana Moreira, both of Texas A&M University, welcome papers covering the best original research on applications of engineering principles and concepts to food and food processes.