DBD 等离子体破坏苯乙烯及其转化途径的实验研究

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Huan Zheng, Guohua Ni, Hongmei Sun, Yanjun Zhao, Siyuan Sui, Zhongyang Ma
{"title":"DBD 等离子体破坏苯乙烯及其转化途径的实验研究","authors":"Huan Zheng,&nbsp;Guohua Ni,&nbsp;Hongmei Sun,&nbsp;Yanjun Zhao,&nbsp;Siyuan Sui,&nbsp;Zhongyang Ma","doi":"10.1002/ctpp.202400010","DOIUrl":null,"url":null,"abstract":"<p>This work was devoted to the investigation of the contribution of various species in plasma to styrene decomposition. Different background gases (air, argon, nitrogen, and oxygen) and plasma reactor (in-plasma, post-plasma, and post-plasma with buffer tube) were employed in this experiment. The results showed that degradation and polymerization of styrene occur simultaneously in the plasma treatment process. In the discharge zone, the bombardment of electrons and energetic particles on styrene and its degradation intermediates played a role in breaking its weak bond energy and promoting their conversion. The short-lived reactive species with high oxidation potential in plasma were the prerequisite for complete degradation of styrene, due to its ability of breaking bonds with large bond energies, such as benzene ring. Away from the discharge zone, long-lived reactive oxygen species further oxidized and degraded styrene, and its intermediates outside the discharge zone, promoting their mineralization.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 10","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of styrene destruction by DBD plasma and its conversion pathways\",\"authors\":\"Huan Zheng,&nbsp;Guohua Ni,&nbsp;Hongmei Sun,&nbsp;Yanjun Zhao,&nbsp;Siyuan Sui,&nbsp;Zhongyang Ma\",\"doi\":\"10.1002/ctpp.202400010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work was devoted to the investigation of the contribution of various species in plasma to styrene decomposition. Different background gases (air, argon, nitrogen, and oxygen) and plasma reactor (in-plasma, post-plasma, and post-plasma with buffer tube) were employed in this experiment. The results showed that degradation and polymerization of styrene occur simultaneously in the plasma treatment process. In the discharge zone, the bombardment of electrons and energetic particles on styrene and its degradation intermediates played a role in breaking its weak bond energy and promoting their conversion. The short-lived reactive species with high oxidation potential in plasma were the prerequisite for complete degradation of styrene, due to its ability of breaking bonds with large bond energies, such as benzene ring. Away from the discharge zone, long-lived reactive oxygen species further oxidized and degraded styrene, and its intermediates outside the discharge zone, promoting their mineralization.</p>\",\"PeriodicalId\":10700,\"journal\":{\"name\":\"Contributions to Plasma Physics\",\"volume\":\"64 10\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202400010\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202400010","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作致力于研究等离子体中各种物质对苯乙烯分解的贡献。实验采用了不同的背景气体(空气、氩气、氮气和氧气)和等离子体反应器(等离子体内、等离子体后和带缓冲管的等离子体后)。结果表明,苯乙烯的降解和聚合在等离子处理过程中同时发生。在放电区,电子和高能粒子对苯乙烯及其降解中间体的轰击起到了破坏其弱键能和促进其转化的作用。等离子体中具有高氧化电位的短寿命反应物是苯乙烯完全降解的先决条件,这是因为等离子体能够打断苯环等具有较大键能的键。在远离放电区的地方,长效活性氧进一步氧化和降解放电区外的苯乙烯及其中间体,促进其矿化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental investigation of styrene destruction by DBD plasma and its conversion pathways

This work was devoted to the investigation of the contribution of various species in plasma to styrene decomposition. Different background gases (air, argon, nitrogen, and oxygen) and plasma reactor (in-plasma, post-plasma, and post-plasma with buffer tube) were employed in this experiment. The results showed that degradation and polymerization of styrene occur simultaneously in the plasma treatment process. In the discharge zone, the bombardment of electrons and energetic particles on styrene and its degradation intermediates played a role in breaking its weak bond energy and promoting their conversion. The short-lived reactive species with high oxidation potential in plasma were the prerequisite for complete degradation of styrene, due to its ability of breaking bonds with large bond energies, such as benzene ring. Away from the discharge zone, long-lived reactive oxygen species further oxidized and degraded styrene, and its intermediates outside the discharge zone, promoting their mineralization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Contributions to Plasma Physics
Contributions to Plasma Physics 物理-物理:流体与等离子体
CiteScore
2.90
自引率
12.50%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Aims and Scope of Contributions to Plasma Physics: Basic physics of low-temperature plasmas; Strongly correlated non-ideal plasmas; Dusty Plasmas; Plasma discharges - microplasmas, reactive, and atmospheric pressure plasmas; Plasma diagnostics; Plasma-surface interaction; Plasma technology; Plasma medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信