{"title":"降低氮肥用量可维持麦芽大麦-豆类轮作的产量和质量","authors":"Upendra M. Sainju","doi":"10.1002/agj2.21717","DOIUrl":null,"url":null,"abstract":"<p>Rotational benefit of pea (<i>Pisum sativum</i> L.) may reduce N fertilization rate and sustain malt barley (<i>Hordeum vulgare</i> L.) yield and quality in the malt barley-pea rotation. This study examined the effect of cover crop [oat (<i>Avena sativa</i> L.) cover crop vs. none] and N fertilization rate (0, 40, 50, 60, 70, and 80 kg N ha<sup>−1</sup>) on malt barley growth, yield, and quality in the malt barley-pea rotation from 2012 to 2019 in the northern Great Plains. Cover crop biomass yield and N accumulation were greater in 2016 than other years. Compared to fallow, malt barley plant density with cover crop was 9%–13% lower from 2013 to 2015, but 10% greater in 2017. Malt barley straw yield was 38% greater in 2017 and grain yield 15%–39% greater in 2017 and 2018, but grain plumpness was 5%–10% lower in 2014 and 2017 with than without cover crop. Increasing N fertilization rate linearly increased grain yield and N uptake, but reduced grain test weight and plumpness in most years. Straw N concentration and uptake and grain protein concentration varied by year. Because of the similar grain yield, protein concentration, plumpness, and test weight between 60 and 80 kg N ha<sup>−1</sup>, 60 kg N ha<sup>−1</sup> can be recommended to sustain malt barley yield and quality in the malt barley-pea rotation, regardless of cover crops. This helps to reduce N fertilization rate by 20 kg N ha<sup>−1</sup> for malt barley in dryland cropping systems of the US northern Great Plains.</p>","PeriodicalId":7522,"journal":{"name":"Agronomy Journal","volume":"116 6","pages":"3021-3032"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agj2.21717","citationCount":"0","resultStr":"{\"title\":\"Reduced nitrogen rate sustains malt barley yield and quality in malt barley-pea rotation\",\"authors\":\"Upendra M. Sainju\",\"doi\":\"10.1002/agj2.21717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rotational benefit of pea (<i>Pisum sativum</i> L.) may reduce N fertilization rate and sustain malt barley (<i>Hordeum vulgare</i> L.) yield and quality in the malt barley-pea rotation. This study examined the effect of cover crop [oat (<i>Avena sativa</i> L.) cover crop vs. none] and N fertilization rate (0, 40, 50, 60, 70, and 80 kg N ha<sup>−1</sup>) on malt barley growth, yield, and quality in the malt barley-pea rotation from 2012 to 2019 in the northern Great Plains. Cover crop biomass yield and N accumulation were greater in 2016 than other years. Compared to fallow, malt barley plant density with cover crop was 9%–13% lower from 2013 to 2015, but 10% greater in 2017. Malt barley straw yield was 38% greater in 2017 and grain yield 15%–39% greater in 2017 and 2018, but grain plumpness was 5%–10% lower in 2014 and 2017 with than without cover crop. Increasing N fertilization rate linearly increased grain yield and N uptake, but reduced grain test weight and plumpness in most years. Straw N concentration and uptake and grain protein concentration varied by year. Because of the similar grain yield, protein concentration, plumpness, and test weight between 60 and 80 kg N ha<sup>−1</sup>, 60 kg N ha<sup>−1</sup> can be recommended to sustain malt barley yield and quality in the malt barley-pea rotation, regardless of cover crops. This helps to reduce N fertilization rate by 20 kg N ha<sup>−1</sup> for malt barley in dryland cropping systems of the US northern Great Plains.</p>\",\"PeriodicalId\":7522,\"journal\":{\"name\":\"Agronomy Journal\",\"volume\":\"116 6\",\"pages\":\"3021-3032\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agj2.21717\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21717\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21717","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Reduced nitrogen rate sustains malt barley yield and quality in malt barley-pea rotation
Rotational benefit of pea (Pisum sativum L.) may reduce N fertilization rate and sustain malt barley (Hordeum vulgare L.) yield and quality in the malt barley-pea rotation. This study examined the effect of cover crop [oat (Avena sativa L.) cover crop vs. none] and N fertilization rate (0, 40, 50, 60, 70, and 80 kg N ha−1) on malt barley growth, yield, and quality in the malt barley-pea rotation from 2012 to 2019 in the northern Great Plains. Cover crop biomass yield and N accumulation were greater in 2016 than other years. Compared to fallow, malt barley plant density with cover crop was 9%–13% lower from 2013 to 2015, but 10% greater in 2017. Malt barley straw yield was 38% greater in 2017 and grain yield 15%–39% greater in 2017 and 2018, but grain plumpness was 5%–10% lower in 2014 and 2017 with than without cover crop. Increasing N fertilization rate linearly increased grain yield and N uptake, but reduced grain test weight and plumpness in most years. Straw N concentration and uptake and grain protein concentration varied by year. Because of the similar grain yield, protein concentration, plumpness, and test weight between 60 and 80 kg N ha−1, 60 kg N ha−1 can be recommended to sustain malt barley yield and quality in the malt barley-pea rotation, regardless of cover crops. This helps to reduce N fertilization rate by 20 kg N ha−1 for malt barley in dryland cropping systems of the US northern Great Plains.
期刊介绍:
After critical review and approval by the editorial board, AJ publishes articles reporting research findings in soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture.
Notes are published about apparatus, observations, and experimental techniques. Observations usually are limited to studies and reports of unrepeatable phenomena or other unique circumstances. Review and interpretation papers are also published, subject to standard review. Contributions to the Forum section deal with current agronomic issues and questions in brief, thought-provoking form. Such papers are reviewed by the editor in consultation with the editorial board.