用于去除染料的高吸附容量和可回收性纤维素复合气凝胶

IF 1.9 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Yang Li, Zhongming Liu, Shoujuan Wang, Fangong Kong
{"title":"用于去除染料的高吸附容量和可回收性纤维素复合气凝胶","authors":"Yang Li,&nbsp;Zhongming Liu,&nbsp;Shoujuan Wang,&nbsp;Fangong Kong","doi":"10.1002/slct.202402801","DOIUrl":null,"url":null,"abstract":"<p>Cellulose-based “biomass” adsorptive materials have gained significant attention because of their effectiveness in various applications. In this study, a cellulose composite aerogel with a rich three-dimensional network structure, low density, and high porosity was successfully obtained by the in situ self-polymerization of dopamine (DA) and acrylamide (AM) in an alkaline urine system. Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, elemental analysis, and other analytical techniques were used to analyze the physical and chemical structures of the cellulose composite aerogels. The results revealed that the introduction of DA and AM into the aerogel enhanced the adsorption and mechanical properties of the active sites, thereby boosting adsorption capacity and recyclability. By optimizing the adsorption of methylene blue (MB) dye using a cellulose composite aerogel, a maximum adsorption capacity of 406.89 mg g was obtained. The MB dye adsorption curve of the cellulose composite aerogel conformed to the Langmuir model, which indicates high adsorption capacity and recyclability. This confirms the high application potential of the cellulose composite aerogel in wastewater treatments.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"9 43","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellulose Composite Aerogels with High Adsorption Capacity and Recyclability for Dye Removal\",\"authors\":\"Yang Li,&nbsp;Zhongming Liu,&nbsp;Shoujuan Wang,&nbsp;Fangong Kong\",\"doi\":\"10.1002/slct.202402801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cellulose-based “biomass” adsorptive materials have gained significant attention because of their effectiveness in various applications. In this study, a cellulose composite aerogel with a rich three-dimensional network structure, low density, and high porosity was successfully obtained by the in situ self-polymerization of dopamine (DA) and acrylamide (AM) in an alkaline urine system. Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, elemental analysis, and other analytical techniques were used to analyze the physical and chemical structures of the cellulose composite aerogels. The results revealed that the introduction of DA and AM into the aerogel enhanced the adsorption and mechanical properties of the active sites, thereby boosting adsorption capacity and recyclability. By optimizing the adsorption of methylene blue (MB) dye using a cellulose composite aerogel, a maximum adsorption capacity of 406.89 mg g was obtained. The MB dye adsorption curve of the cellulose composite aerogel conformed to the Langmuir model, which indicates high adsorption capacity and recyclability. This confirms the high application potential of the cellulose composite aerogel in wastewater treatments.</p>\",\"PeriodicalId\":146,\"journal\":{\"name\":\"ChemistrySelect\",\"volume\":\"9 43\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistrySelect\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/slct.202402801\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202402801","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纤维素基 "生物质 "吸附材料因其在各种应用中的有效性而备受关注。本研究通过多巴胺(DA)和丙烯酰胺(AM)在碱性尿液体系中的原位自聚合反应,成功获得了一种具有丰富三维网络结构、低密度和高孔隙率的纤维素复合气凝胶。傅立叶变换红外光谱、扫描电子显微镜、X射线光电子能谱、元素分析等分析技术用于分析纤维素复合气凝胶的物理和化学结构。结果表明,在气凝胶中引入 DA 和 AM 可增强活性位点的吸附性和机械性能,从而提高吸附能力和可回收性。通过优化纤维素复合气凝胶对亚甲基蓝(MB)染料的吸附,获得了 406.89 mg g 的最大吸附容量。纤维素复合气凝胶对亚甲蓝染料的吸附曲线符合 Langmuir 模型,这表明它具有很高的吸附能力和可回收性。这证实了纤维素复合气凝胶在废水处理中的巨大应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cellulose Composite Aerogels with High Adsorption Capacity and Recyclability for Dye Removal

Cellulose Composite Aerogels with High Adsorption Capacity and Recyclability for Dye Removal

Cellulose-based “biomass” adsorptive materials have gained significant attention because of their effectiveness in various applications. In this study, a cellulose composite aerogel with a rich three-dimensional network structure, low density, and high porosity was successfully obtained by the in situ self-polymerization of dopamine (DA) and acrylamide (AM) in an alkaline urine system. Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, elemental analysis, and other analytical techniques were used to analyze the physical and chemical structures of the cellulose composite aerogels. The results revealed that the introduction of DA and AM into the aerogel enhanced the adsorption and mechanical properties of the active sites, thereby boosting adsorption capacity and recyclability. By optimizing the adsorption of methylene blue (MB) dye using a cellulose composite aerogel, a maximum adsorption capacity of 406.89 mg g was obtained. The MB dye adsorption curve of the cellulose composite aerogel conformed to the Langmuir model, which indicates high adsorption capacity and recyclability. This confirms the high application potential of the cellulose composite aerogel in wastewater treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信