更正:关于 E $E$ 理论的拓扑学

IF 1 2区 数学 Q1 MATHEMATICS
José R. Carrión, Christopher Schafhauser
{"title":"更正:关于 E $E$ 理论的拓扑学","authors":"José R. Carrión,&nbsp;Christopher Schafhauser","doi":"10.1112/jlms.70029","DOIUrl":null,"url":null,"abstract":"<p>The second sentence of [<span>1</span>, Corollary 4.4] does not follow from the given reference, and we do not know if it is true as stated. What is true is that if <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>x</mi>\n <mo>¯</mo>\n </mover>\n <mo>∈</mo>\n <msub>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mo>[</mo>\n <mi>A</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>]</mo>\n </mrow>\n <mo>]</mo>\n </mrow>\n <mi>Hd</mi>\n </msub>\n </mrow>\n <annotation>$\\bar{x} \\in [[A, B]]_{\\mathrm{Hd}}$</annotation>\n </semantics></math> is an isomorphism, then there is an isomorphism <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>∈</mo>\n <mo>[</mo>\n <mo>[</mo>\n <mi>A</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>]</mo>\n <mo>]</mo>\n </mrow>\n <annotation>$x \\in [[A, B]]$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>Hd</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mover>\n <mi>x</mi>\n <mo>¯</mo>\n </mover>\n </mrow>\n <annotation>$\\mathrm{Hd}(x) = \\bar{x}$</annotation>\n </semantics></math>. Indeed, [<span>2</span>, Theorem 1.14] implies every isomorphism in the shape category <span></span><math>\n <semantics>\n <mi>sh</mi>\n <annotation>$\\mathsf {sh}$</annotation>\n </semantics></math> is induced by an isomorphism in the strong shape category <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>$\\mathsf {s}$</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <mi>sh</mi>\n <annotation>$\\mathsf {sh}$</annotation>\n </semantics></math>, and then the result follows from using [<span>1</span>, Theorem 4.3; <span>2</span>, Theorem 3.7] to identify these categories with the Hausdorffized asymptotic morphism category <span></span><math>\n <semantics>\n <msub>\n <mi>AM</mi>\n <mi>Hd</mi>\n </msub>\n <annotation>$\\mathsf {AM}_{\\mathrm{Hd}}$</annotation>\n </semantics></math> and the asymptotic morphism category <span></span><math>\n <semantics>\n <mi>AM</mi>\n <annotation>$\\mathsf {AM}$</annotation>\n </semantics></math>.</p><p>This error has no effect on the rest of the results in the paper.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70029","citationCount":"0","resultStr":"{\"title\":\"Corrigendum: A topology on \\n \\n E\\n $E$\\n -theory\",\"authors\":\"José R. Carrión,&nbsp;Christopher Schafhauser\",\"doi\":\"10.1112/jlms.70029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The second sentence of [<span>1</span>, Corollary 4.4] does not follow from the given reference, and we do not know if it is true as stated. What is true is that if <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>x</mi>\\n <mo>¯</mo>\\n </mover>\\n <mo>∈</mo>\\n <msub>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mo>[</mo>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mi>B</mi>\\n <mo>]</mo>\\n </mrow>\\n <mo>]</mo>\\n </mrow>\\n <mi>Hd</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\bar{x} \\\\in [[A, B]]_{\\\\mathrm{Hd}}$</annotation>\\n </semantics></math> is an isomorphism, then there is an isomorphism <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mo>∈</mo>\\n <mo>[</mo>\\n <mo>[</mo>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mi>B</mi>\\n <mo>]</mo>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$x \\\\in [[A, B]]$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Hd</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mover>\\n <mi>x</mi>\\n <mo>¯</mo>\\n </mover>\\n </mrow>\\n <annotation>$\\\\mathrm{Hd}(x) = \\\\bar{x}$</annotation>\\n </semantics></math>. Indeed, [<span>2</span>, Theorem 1.14] implies every isomorphism in the shape category <span></span><math>\\n <semantics>\\n <mi>sh</mi>\\n <annotation>$\\\\mathsf {sh}$</annotation>\\n </semantics></math> is induced by an isomorphism in the strong shape category <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>$\\\\mathsf {s}$</annotation>\\n </semantics></math>-<span></span><math>\\n <semantics>\\n <mi>sh</mi>\\n <annotation>$\\\\mathsf {sh}$</annotation>\\n </semantics></math>, and then the result follows from using [<span>1</span>, Theorem 4.3; <span>2</span>, Theorem 3.7] to identify these categories with the Hausdorffized asymptotic morphism category <span></span><math>\\n <semantics>\\n <msub>\\n <mi>AM</mi>\\n <mi>Hd</mi>\\n </msub>\\n <annotation>$\\\\mathsf {AM}_{\\\\mathrm{Hd}}$</annotation>\\n </semantics></math> and the asymptotic morphism category <span></span><math>\\n <semantics>\\n <mi>AM</mi>\\n <annotation>$\\\\mathsf {AM}$</annotation>\\n </semantics></math>.</p><p>This error has no effect on the rest of the results in the paper.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70029\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70029\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70029","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

[1,推论 4.4] 的第二句话并不是从给出的参考文献中得出的,我们也不知道它是否如所说的那样是真的。真实的情况是,如果 x ∈ [ [ A , B ] ] Hd $\bar{x}\in [[A, B]]_{mathrm{Hd}}$ 是一个同构,那么就有一个同构 x ∈ [ [ A , B ] ]。 ] $x \in [[A, B]]$ 这样 Hd ( x ) = x ¯ $\mathrm{Hd}(x) = \bar{x}$ 。事实上,[2, Theorem 1.14]意味着形状范畴 sh $\mathsf {sh}$ 中的每一个同构都是由强形状范畴 s $\mathsf {s}$ - sh $\mathsf {sh}$ 中的一个同构诱导的,然后使用[1, Theorem 4.3; 2, Theorem 3.7] 将这些范畴与 Hausdorffized渐近形态范畴 AM Hd $\mathsf {AM}_{\mathrm{Hd}}$ 和渐近形态范畴 AM $\mathsf {AM}$ 标识开来,就得出了结果。这个错误对本文的其他结果没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corrigendum: A topology on E $E$ -theory

The second sentence of [1, Corollary 4.4] does not follow from the given reference, and we do not know if it is true as stated. What is true is that if x ¯ [ [ A , B ] ] Hd $\bar{x} \in [[A, B]]_{\mathrm{Hd}}$ is an isomorphism, then there is an isomorphism x [ [ A , B ] ] $x \in [[A, B]]$ such that Hd ( x ) = x ¯ $\mathrm{Hd}(x) = \bar{x}$ . Indeed, [2, Theorem 1.14] implies every isomorphism in the shape category sh $\mathsf {sh}$ is induced by an isomorphism in the strong shape category s $\mathsf {s}$ - sh $\mathsf {sh}$ , and then the result follows from using [1, Theorem 4.3; 2, Theorem 3.7] to identify these categories with the Hausdorffized asymptotic morphism category AM Hd $\mathsf {AM}_{\mathrm{Hd}}$ and the asymptotic morphism category AM $\mathsf {AM}$ .

This error has no effect on the rest of the results in the paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信