求解三次席格方程的直接方法

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Yoshimasa Matsuno
{"title":"求解三次席格方程的直接方法","authors":"Yoshimasa Matsuno","doi":"10.1111/sapm.12770","DOIUrl":null,"url":null,"abstract":"<p>We study the cubic Szegö equation which is an integrable nonlinear nondispersive and nonlocal evolution equation. In particular, we present a direct approach for obtaining the multiphase and multisoliton solutions as well as a special class of periodic solutions. Our method is substantially different from the existing one which relies mainly on the spectral analysis of the Hankel operator. We show that the cubic Szegö equation can be bilinearized through appropriate dependent variable transformations and then the solutions satisfy a set of bilinear equations. The proof is carried out within the framework of an elementary theory of determinants. Furthermore, we demonstrate that the eigenfunctions associated with the multiphase solutions satisfy the Lax pair for the cubic Szegö equation, providing an alternative proof of the solutions. Last, the eigenvalue problem for a periodic solution is solved exactly to obtain the analytical expressions of the eigenvalues.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A direct approach for solving the cubic Szegö equation\",\"authors\":\"Yoshimasa Matsuno\",\"doi\":\"10.1111/sapm.12770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the cubic Szegö equation which is an integrable nonlinear nondispersive and nonlocal evolution equation. In particular, we present a direct approach for obtaining the multiphase and multisoliton solutions as well as a special class of periodic solutions. Our method is substantially different from the existing one which relies mainly on the spectral analysis of the Hankel operator. We show that the cubic Szegö equation can be bilinearized through appropriate dependent variable transformations and then the solutions satisfy a set of bilinear equations. The proof is carried out within the framework of an elementary theory of determinants. Furthermore, we demonstrate that the eigenfunctions associated with the multiphase solutions satisfy the Lax pair for the cubic Szegö equation, providing an alternative proof of the solutions. Last, the eigenvalue problem for a periodic solution is solved exactly to obtain the analytical expressions of the eigenvalues.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"153 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12770\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12770","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的三次Szegö方程是一个可积分的非线性非分散非局部演化方程。特别是,我们提出了一种直接获取多相和多孑L解以及一类特殊周期解的方法。我们的方法与现有方法有本质区别,后者主要依赖于汉克尔算子的谱分析。我们证明,通过适当的因变量变换,可以将三次Szegö方程双线性化,然后解满足一组双线性方程。证明是在行列式基本理论的框架内进行的。此外,我们还证明了与多相解相关的特征函数满足三次Szegö方程的Lax对,从而为解法提供了另一种证明。最后,我们精确求解了周期解的特征值问题,从而得到了特征值的解析表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A direct approach for solving the cubic Szegö equation

We study the cubic Szegö equation which is an integrable nonlinear nondispersive and nonlocal evolution equation. In particular, we present a direct approach for obtaining the multiphase and multisoliton solutions as well as a special class of periodic solutions. Our method is substantially different from the existing one which relies mainly on the spectral analysis of the Hankel operator. We show that the cubic Szegö equation can be bilinearized through appropriate dependent variable transformations and then the solutions satisfy a set of bilinear equations. The proof is carried out within the framework of an elementary theory of determinants. Furthermore, we demonstrate that the eigenfunctions associated with the multiphase solutions satisfy the Lax pair for the cubic Szegö equation, providing an alternative proof of the solutions. Last, the eigenvalue problem for a periodic solution is solved exactly to obtain the analytical expressions of the eigenvalues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信