{"title":"求解三次席格方程的直接方法","authors":"Yoshimasa Matsuno","doi":"10.1111/sapm.12770","DOIUrl":null,"url":null,"abstract":"<p>We study the cubic Szegö equation which is an integrable nonlinear nondispersive and nonlocal evolution equation. In particular, we present a direct approach for obtaining the multiphase and multisoliton solutions as well as a special class of periodic solutions. Our method is substantially different from the existing one which relies mainly on the spectral analysis of the Hankel operator. We show that the cubic Szegö equation can be bilinearized through appropriate dependent variable transformations and then the solutions satisfy a set of bilinear equations. The proof is carried out within the framework of an elementary theory of determinants. Furthermore, we demonstrate that the eigenfunctions associated with the multiphase solutions satisfy the Lax pair for the cubic Szegö equation, providing an alternative proof of the solutions. Last, the eigenvalue problem for a periodic solution is solved exactly to obtain the analytical expressions of the eigenvalues.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A direct approach for solving the cubic Szegö equation\",\"authors\":\"Yoshimasa Matsuno\",\"doi\":\"10.1111/sapm.12770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the cubic Szegö equation which is an integrable nonlinear nondispersive and nonlocal evolution equation. In particular, we present a direct approach for obtaining the multiphase and multisoliton solutions as well as a special class of periodic solutions. Our method is substantially different from the existing one which relies mainly on the spectral analysis of the Hankel operator. We show that the cubic Szegö equation can be bilinearized through appropriate dependent variable transformations and then the solutions satisfy a set of bilinear equations. The proof is carried out within the framework of an elementary theory of determinants. Furthermore, we demonstrate that the eigenfunctions associated with the multiphase solutions satisfy the Lax pair for the cubic Szegö equation, providing an alternative proof of the solutions. Last, the eigenvalue problem for a periodic solution is solved exactly to obtain the analytical expressions of the eigenvalues.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"153 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12770\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12770","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A direct approach for solving the cubic Szegö equation
We study the cubic Szegö equation which is an integrable nonlinear nondispersive and nonlocal evolution equation. In particular, we present a direct approach for obtaining the multiphase and multisoliton solutions as well as a special class of periodic solutions. Our method is substantially different from the existing one which relies mainly on the spectral analysis of the Hankel operator. We show that the cubic Szegö equation can be bilinearized through appropriate dependent variable transformations and then the solutions satisfy a set of bilinear equations. The proof is carried out within the framework of an elementary theory of determinants. Furthermore, we demonstrate that the eigenfunctions associated with the multiphase solutions satisfy the Lax pair for the cubic Szegö equation, providing an alternative proof of the solutions. Last, the eigenvalue problem for a periodic solution is solved exactly to obtain the analytical expressions of the eigenvalues.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.