非线性色散 KdV 和 KP 方程的弱紧凑子

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
S. C. Anco, M. L. Gandarias
{"title":"非线性色散 KdV 和 KP 方程的弱紧凑子","authors":"S. C. Anco,&nbsp;M. L. Gandarias","doi":"10.1111/sapm.12777","DOIUrl":null,"url":null,"abstract":"<p>A weak formulation is devised for the <span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$K(m,n)$</annotation>\n </semantics></math> equation, which is a nonlinearly dispersive generalization of the gKdV equation  having compacton solutions. With this formulation, explicit weak compacton solutions are derived, including ones that do not exist as classical (strong) solutions. Similar results are obtained for a nonlinearly dispersive generalization of the gKP equation in two dimensions, which possesses line compacton solutions.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12777","citationCount":"0","resultStr":"{\"title\":\"Weak compactons of nonlinearly dispersive KdV and KP equations\",\"authors\":\"S. C. Anco,&nbsp;M. L. Gandarias\",\"doi\":\"10.1111/sapm.12777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A weak formulation is devised for the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>K</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$K(m,n)$</annotation>\\n </semantics></math> equation, which is a nonlinearly dispersive generalization of the gKdV equation  having compacton solutions. With this formulation, explicit weak compacton solutions are derived, including ones that do not exist as classical (strong) solutions. Similar results are obtained for a nonlinearly dispersive generalization of the gKP equation in two dimensions, which possesses line compacton solutions.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"153 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12777\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12777\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12777","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

为 K ( m , n ) $K(m,n)$ 方程设计了一种弱公式,它是 gKdV 方程的非线性色散广义化,具有紧凑子解。利用这种表述方法,可以得到明确的弱紧凑子解,包括不存在经典(强)解的弱紧凑子解。类似的结果也适用于 gKP 方程在二维的非线性色散广义化,它具有线紧凑子解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Weak compactons of nonlinearly dispersive KdV and KP equations

Weak compactons of nonlinearly dispersive KdV and KP equations

A weak formulation is devised for the K ( m , n ) $K(m,n)$ equation, which is a nonlinearly dispersive generalization of the gKdV equation  having compacton solutions. With this formulation, explicit weak compacton solutions are derived, including ones that do not exist as classical (strong) solutions. Similar results are obtained for a nonlinearly dispersive generalization of the gKP equation in two dimensions, which possesses line compacton solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信