饮用水缓冲强度模拟器(BIS):开发和实际模拟

David G. Wahman, Michael R. Schock, Darren A. Lytle
{"title":"饮用水缓冲强度模拟器(BIS):开发和实际模拟","authors":"David G. Wahman,&nbsp;Michael R. Schock,&nbsp;Darren A. Lytle","doi":"10.1002/aws2.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>An established body of research over many decades has identified the importance of both bulk-water and pipe scale surface microenvironment buffering to meet distribution system pH targets and reduce corrosivity toward metallic piping and components. Buffer intensity quantifies the ability of water to resist pH changes, and the greater the buffer intensity, the more resistant the water is to pH changes. To provide a practical tool for exploring buffer intensity, a buffer intensity simulator (BIS) was implemented in open-source R code, incorporating typical chemical species (e.g., carbonate and orthophosphate) that contribute to drinking water buffer intensity along with temperature and ionic strength impacts. The BIS was verified against a parallel spreadsheet implementation and is publicly available at https://github.com/USEPA/BIS. Simulations were conducted to illustrate impacts related to buffer intensity using three practical scenarios: carbonate buffering in drinking waters, temperature impacts, and free ammonia presence from chloramine use and/or source water presence.</p>\n </section>\n </div>","PeriodicalId":101301,"journal":{"name":"AWWA water science","volume":"6 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drinking water buffer intensity simulator (BIS): Development and practical simulations\",\"authors\":\"David G. Wahman,&nbsp;Michael R. Schock,&nbsp;Darren A. Lytle\",\"doi\":\"10.1002/aws2.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>An established body of research over many decades has identified the importance of both bulk-water and pipe scale surface microenvironment buffering to meet distribution system pH targets and reduce corrosivity toward metallic piping and components. Buffer intensity quantifies the ability of water to resist pH changes, and the greater the buffer intensity, the more resistant the water is to pH changes. To provide a practical tool for exploring buffer intensity, a buffer intensity simulator (BIS) was implemented in open-source R code, incorporating typical chemical species (e.g., carbonate and orthophosphate) that contribute to drinking water buffer intensity along with temperature and ionic strength impacts. The BIS was verified against a parallel spreadsheet implementation and is publicly available at https://github.com/USEPA/BIS. Simulations were conducted to illustrate impacts related to buffer intensity using three practical scenarios: carbonate buffering in drinking waters, temperature impacts, and free ammonia presence from chloramine use and/or source water presence.</p>\\n </section>\\n </div>\",\"PeriodicalId\":101301,\"journal\":{\"name\":\"AWWA water science\",\"volume\":\"6 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AWWA water science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aws2.70006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AWWA water science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aws2.70006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数十年来的大量研究表明,要达到配水系统的 pH 值目标并降低对金属管道和部件的腐蚀性,散装水和管道表面微环境缓冲都非常重要。缓冲强度量化了水体抵御 pH 值变化的能力,缓冲强度越大,水体抵御 pH 值变化的能力越强。为了提供一种探索缓冲强度的实用工具,我们用开源 R 代码实现了缓冲强度模拟器 (BIS),其中包含对饮用水缓冲强度有影响的典型化学物质(如碳酸盐和正磷酸盐),以及温度和离子强度的影响。BIS 已通过并行电子表格实施验证,可在 https://github.com/USEPA/BIS 上公开获取。通过三种实际情况进行了模拟,以说明与缓冲强度有关的影响:饮用水中的碳酸盐缓冲、温度影响以及使用氯胺和/或原水中的游离氨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drinking water buffer intensity simulator (BIS): Development and practical simulations

An established body of research over many decades has identified the importance of both bulk-water and pipe scale surface microenvironment buffering to meet distribution system pH targets and reduce corrosivity toward metallic piping and components. Buffer intensity quantifies the ability of water to resist pH changes, and the greater the buffer intensity, the more resistant the water is to pH changes. To provide a practical tool for exploring buffer intensity, a buffer intensity simulator (BIS) was implemented in open-source R code, incorporating typical chemical species (e.g., carbonate and orthophosphate) that contribute to drinking water buffer intensity along with temperature and ionic strength impacts. The BIS was verified against a parallel spreadsheet implementation and is publicly available at https://github.com/USEPA/BIS. Simulations were conducted to illustrate impacts related to buffer intensity using three practical scenarios: carbonate buffering in drinking waters, temperature impacts, and free ammonia presence from chloramine use and/or source water presence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信