热带多项式除法的可实现性

IF 1 2区 数学 Q1 MATHEMATICS
Felix Röhrle, Johannes Schwab
{"title":"热带多项式除法的可实现性","authors":"Felix Röhrle,&nbsp;Johannes Schwab","doi":"10.1112/jlms.70027","DOIUrl":null,"url":null,"abstract":"<p>Consider a pair consisting of an abstract tropical curve and an effective divisor from the linear system associated to <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> times the canonical divisor for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <msub>\n <mi>Z</mi>\n <mrow>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$k \\in \\mathbb {Z}_{\\geqslant 1}$</annotation>\n </semantics></math>. In this article, we give a purely combinatorial criterion to determine if such a pair arises as the tropicalization of a pair consisting of a smooth algebraic curve over a non-Archimedean field with algebraically closed residue field of characteristic 0 together with an effective pluri-canonical divisor. To do so, we introduce tropical normalized covers as special instances of cyclic tropical Hurwitz covers and reduce the realizability problem for pluri-canonical divisors to the realizability problem for normalized covers. Our main result generalizes the work of Möller–Ulirsch–Werner on realizability of tropical canonical divisors and incorporates the recent progress on compactifications of strata of <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-differentials in the work of Bainbridge–Chen–Gendron–Grushevsky–Möller.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70027","citationCount":"0","resultStr":"{\"title\":\"Realizability of tropical pluri-canonical divisors\",\"authors\":\"Felix Röhrle,&nbsp;Johannes Schwab\",\"doi\":\"10.1112/jlms.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider a pair consisting of an abstract tropical curve and an effective divisor from the linear system associated to <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> times the canonical divisor for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>∈</mo>\\n <msub>\\n <mi>Z</mi>\\n <mrow>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$k \\\\in \\\\mathbb {Z}_{\\\\geqslant 1}$</annotation>\\n </semantics></math>. In this article, we give a purely combinatorial criterion to determine if such a pair arises as the tropicalization of a pair consisting of a smooth algebraic curve over a non-Archimedean field with algebraically closed residue field of characteristic 0 together with an effective pluri-canonical divisor. To do so, we introduce tropical normalized covers as special instances of cyclic tropical Hurwitz covers and reduce the realizability problem for pluri-canonical divisors to the realizability problem for normalized covers. Our main result generalizes the work of Möller–Ulirsch–Werner on realizability of tropical canonical divisors and incorporates the recent progress on compactifications of strata of <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-differentials in the work of Bainbridge–Chen–Gendron–Grushevsky–Möller.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70027\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70027","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑一对由抽象热带曲线和与 k ∈ Z ⩾ 1 $k \ in \mathbb {Z}_{\geqslant 1}$ 相关的线性系统中的有效除数组成的k $k$ 乘以k ∈ Z ⩾ 1 $k \ in \mathbb {Z}_{\geqslant 1}$ 的典型除数。在这篇文章里,我们给出了一个纯粹的组合标准,以确定这样的一对是否是由非阿基米德域上的光滑代数曲线与特征为 0 的代数封闭残差域以及一个有效的诸元整除器组成的一对的热带化而产生的。为此,我们引入了热带归一化盖作为循环热带赫维兹盖的特例,并将pluri-canonical 除数的可实现性问题简化为归一化盖的可实现性问题。我们的主要结果概括了莫勒-乌尔希-维尔纳(Möller-Ulirsch-Werner)关于热带规范化除数可实现性的工作,并结合了贝恩布里奇-陈-根德隆-格鲁舍夫斯基-莫勒(Bainbridge-Chen-Gendron-Grushevsky-Möller)工作中关于 k $k$ -微分的层压缩的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realizability of tropical pluri-canonical divisors

Consider a pair consisting of an abstract tropical curve and an effective divisor from the linear system associated to k $k$ times the canonical divisor for k Z 1 $k \in \mathbb {Z}_{\geqslant 1}$ . In this article, we give a purely combinatorial criterion to determine if such a pair arises as the tropicalization of a pair consisting of a smooth algebraic curve over a non-Archimedean field with algebraically closed residue field of characteristic 0 together with an effective pluri-canonical divisor. To do so, we introduce tropical normalized covers as special instances of cyclic tropical Hurwitz covers and reduce the realizability problem for pluri-canonical divisors to the realizability problem for normalized covers. Our main result generalizes the work of Möller–Ulirsch–Werner on realizability of tropical canonical divisors and incorporates the recent progress on compactifications of strata of k $k$ -differentials in the work of Bainbridge–Chen–Gendron–Grushevsky–Möller.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信