基于模型预测控制的风电集群输电网络多时段无功功率和电压优化调节

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Hong Wang, Chao Yuan, Wen Gu, Chun Yang, Minhao Kong, Jian Yu
{"title":"基于模型预测控制的风电集群输电网络多时段无功功率和电压优化调节","authors":"Hong Wang,&nbsp;Chao Yuan,&nbsp;Wen Gu,&nbsp;Chun Yang,&nbsp;Minhao Kong,&nbsp;Jian Yu","doi":"10.1155/2024/7687093","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In order to solve the problem of voltage fluctuation caused by the grid integration of wind power cluster, a multitime scale reactive power and voltage optimal regulation method based on model predictive control (MPC) is proposed in this paper. In the day-ahead stage, the reduction of network active power loss is mainly achieved through the regulation of discrete reactive power compensation devices and generator units, focusing on the economic operation of the power system. In the intraday stage, considering the rapid response characteristics of continuous reactive power compensation devices, the optimal regulation aiming to minimize voltage control deviation is carried out under 15- and 5-min time scale based on the MPC algorithm with the adjustment of continuous reactive power compensation devices. In the feedback correction stage, a fast calculation method considering reactive power partitioning is adopted instead of solving the 5-min optimization model for 288 periods, avoiding excessive adjustment of reactive compensation devices. While effectively improving voltage fluctuations caused by wind power prediction deviation, it also alleviated the computational and communication burden on the system. Finally, the effectiveness of the proposed regulation method in this paper is verified with the improved IEEE-39 test case.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7687093","citationCount":"0","resultStr":"{\"title\":\"Multitime Scale Reactive Power and Voltage Optimal Regulation for Transmission Network With Wind Power Cluster Based on Model Predictive Control\",\"authors\":\"Hong Wang,&nbsp;Chao Yuan,&nbsp;Wen Gu,&nbsp;Chun Yang,&nbsp;Minhao Kong,&nbsp;Jian Yu\",\"doi\":\"10.1155/2024/7687093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In order to solve the problem of voltage fluctuation caused by the grid integration of wind power cluster, a multitime scale reactive power and voltage optimal regulation method based on model predictive control (MPC) is proposed in this paper. In the day-ahead stage, the reduction of network active power loss is mainly achieved through the regulation of discrete reactive power compensation devices and generator units, focusing on the economic operation of the power system. In the intraday stage, considering the rapid response characteristics of continuous reactive power compensation devices, the optimal regulation aiming to minimize voltage control deviation is carried out under 15- and 5-min time scale based on the MPC algorithm with the adjustment of continuous reactive power compensation devices. In the feedback correction stage, a fast calculation method considering reactive power partitioning is adopted instead of solving the 5-min optimization model for 288 periods, avoiding excessive adjustment of reactive compensation devices. While effectively improving voltage fluctuations caused by wind power prediction deviation, it also alleviated the computational and communication burden on the system. Finally, the effectiveness of the proposed regulation method in this paper is verified with the improved IEEE-39 test case.</p>\\n </div>\",\"PeriodicalId\":51293,\"journal\":{\"name\":\"International Transactions on Electrical Energy Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7687093\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions on Electrical Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/7687093\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7687093","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了解决风电集群并网引起的电压波动问题,本文提出了一种基于模型预测控制(MPC)的多时段无功和电压优化调节方法。在日前阶段,主要通过离散无功补偿装置和发电机组的调节来减少电网有功功率损耗,注重电力系统的经济运行。在日内阶段,考虑到连续无功补偿装置的快速响应特性,在 15 分钟和 5 分钟时间尺度下,基于 MPC 算法,通过连续无功补偿装置的调节,实现以最小电压控制偏差为目标的最优调节。在反馈修正阶段,采用考虑无功功率分区的快速计算方法,而不是求解 288 个周期的 5min 优化模型,避免了无功补偿装置的过度调整。在有效改善风功率预测偏差引起的电压波动的同时,也减轻了系统的计算和通信负担。最后,本文提出的调节方法的有效性通过改进后的 IEEE-39 测试用例得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multitime Scale Reactive Power and Voltage Optimal Regulation for Transmission Network With Wind Power Cluster Based on Model Predictive Control

Multitime Scale Reactive Power and Voltage Optimal Regulation for Transmission Network With Wind Power Cluster Based on Model Predictive Control

In order to solve the problem of voltage fluctuation caused by the grid integration of wind power cluster, a multitime scale reactive power and voltage optimal regulation method based on model predictive control (MPC) is proposed in this paper. In the day-ahead stage, the reduction of network active power loss is mainly achieved through the regulation of discrete reactive power compensation devices and generator units, focusing on the economic operation of the power system. In the intraday stage, considering the rapid response characteristics of continuous reactive power compensation devices, the optimal regulation aiming to minimize voltage control deviation is carried out under 15- and 5-min time scale based on the MPC algorithm with the adjustment of continuous reactive power compensation devices. In the feedback correction stage, a fast calculation method considering reactive power partitioning is adopted instead of solving the 5-min optimization model for 288 periods, avoiding excessive adjustment of reactive compensation devices. While effectively improving voltage fluctuations caused by wind power prediction deviation, it also alleviated the computational and communication burden on the system. Finally, the effectiveness of the proposed regulation method in this paper is verified with the improved IEEE-39 test case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Transactions on Electrical Energy Systems
International Transactions on Electrical Energy Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
6.70
自引率
8.70%
发文量
342
期刊介绍: International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems. Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信