{"title":"COVID-19 利用连续空气质量监测数据评估幼儿园的感染风险","authors":"Chung-Yen Chen, Jia-Kun Chen, Chia-Pin Chio, Pau-Chung Chen, Ta-Chen Su, Chang-Chuan Chan","doi":"10.1155/2024/1779971","DOIUrl":null,"url":null,"abstract":"<p>Researchers and transnational public health organizations have recognized aerosol transmission as an essential route of COVID-19 transmission. Therefore, improving ventilation systems is now adopted as a core preventive measure. As young children aged 2–6 in kindergartens generally lack vaccine protection and multiple infection clusters have been identified during the pandemic, we aimed to quantify the risk of aerosol transmission in kindergartens in Taipei, Taiwan. From August to November 2021, we conducted on-site visits and continuously monitored indoor air quality indicators including carbon dioxide (CO<sub>2</sub>) in a kindergarten located in northern Taiwan. We utilized the Wells–Riley model to estimate the basic reproduction number (<i>R</i><sub>0</sub>) of each classroom and staff office, with input parameters including the number of occupants, duration of their stay, and indoor/outdoor CO<sub>2</sub> concentration. Contagious settings were defined as those where the <i>R</i><sub>0</sub> estimate exceeded 1. We conducted a scenario/sensitivity analysis to assess the effect of simulated improvement measures. During school hours, the average concentration of CO<sub>2</sub> in each classroom and the staff office was often more than 400 ppm higher than the outdoor levels. The <i>R</i><sub>0</sub> estimates gradually increased from Monday to Friday and throughout school hours, corresponding to the hourly and daily distribution of the CO<sub>2</sub> concentration, which could not dissipate completely during off-duty time. The <i>R</i><sub>0</sub> estimates during school hours ranged from 3.01 to 3.12 in classrooms with a maximum of 30 occupants. To lower the <i>R</i><sub>0</sub> estimate, it is imperative to substantially reduce the number of occupants, the duration of their stay, and indoor CO<sub>2</sub> concentration. The risk of outbreaks of cluster infections in kindergartens should not be underestimated. Feasible strategies to mitigate this risk should include improving ventilation systems through engineering control and limiting the number of indoor occupants and their time staying indoor through administrative control.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1779971","citationCount":"0","resultStr":"{\"title\":\"COVID-19 Infection Risk Assessment in a Kindergarten Utilizing Continuous Air Quality Monitoring Data\",\"authors\":\"Chung-Yen Chen, Jia-Kun Chen, Chia-Pin Chio, Pau-Chung Chen, Ta-Chen Su, Chang-Chuan Chan\",\"doi\":\"10.1155/2024/1779971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Researchers and transnational public health organizations have recognized aerosol transmission as an essential route of COVID-19 transmission. Therefore, improving ventilation systems is now adopted as a core preventive measure. As young children aged 2–6 in kindergartens generally lack vaccine protection and multiple infection clusters have been identified during the pandemic, we aimed to quantify the risk of aerosol transmission in kindergartens in Taipei, Taiwan. From August to November 2021, we conducted on-site visits and continuously monitored indoor air quality indicators including carbon dioxide (CO<sub>2</sub>) in a kindergarten located in northern Taiwan. We utilized the Wells–Riley model to estimate the basic reproduction number (<i>R</i><sub>0</sub>) of each classroom and staff office, with input parameters including the number of occupants, duration of their stay, and indoor/outdoor CO<sub>2</sub> concentration. Contagious settings were defined as those where the <i>R</i><sub>0</sub> estimate exceeded 1. We conducted a scenario/sensitivity analysis to assess the effect of simulated improvement measures. During school hours, the average concentration of CO<sub>2</sub> in each classroom and the staff office was often more than 400 ppm higher than the outdoor levels. The <i>R</i><sub>0</sub> estimates gradually increased from Monday to Friday and throughout school hours, corresponding to the hourly and daily distribution of the CO<sub>2</sub> concentration, which could not dissipate completely during off-duty time. The <i>R</i><sub>0</sub> estimates during school hours ranged from 3.01 to 3.12 in classrooms with a maximum of 30 occupants. To lower the <i>R</i><sub>0</sub> estimate, it is imperative to substantially reduce the number of occupants, the duration of their stay, and indoor CO<sub>2</sub> concentration. The risk of outbreaks of cluster infections in kindergartens should not be underestimated. Feasible strategies to mitigate this risk should include improving ventilation systems through engineering control and limiting the number of indoor occupants and their time staying indoor through administrative control.</p>\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1779971\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/1779971\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/1779971","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
COVID-19 Infection Risk Assessment in a Kindergarten Utilizing Continuous Air Quality Monitoring Data
Researchers and transnational public health organizations have recognized aerosol transmission as an essential route of COVID-19 transmission. Therefore, improving ventilation systems is now adopted as a core preventive measure. As young children aged 2–6 in kindergartens generally lack vaccine protection and multiple infection clusters have been identified during the pandemic, we aimed to quantify the risk of aerosol transmission in kindergartens in Taipei, Taiwan. From August to November 2021, we conducted on-site visits and continuously monitored indoor air quality indicators including carbon dioxide (CO2) in a kindergarten located in northern Taiwan. We utilized the Wells–Riley model to estimate the basic reproduction number (R0) of each classroom and staff office, with input parameters including the number of occupants, duration of their stay, and indoor/outdoor CO2 concentration. Contagious settings were defined as those where the R0 estimate exceeded 1. We conducted a scenario/sensitivity analysis to assess the effect of simulated improvement measures. During school hours, the average concentration of CO2 in each classroom and the staff office was often more than 400 ppm higher than the outdoor levels. The R0 estimates gradually increased from Monday to Friday and throughout school hours, corresponding to the hourly and daily distribution of the CO2 concentration, which could not dissipate completely during off-duty time. The R0 estimates during school hours ranged from 3.01 to 3.12 in classrooms with a maximum of 30 occupants. To lower the R0 estimate, it is imperative to substantially reduce the number of occupants, the duration of their stay, and indoor CO2 concentration. The risk of outbreaks of cluster infections in kindergartens should not be underestimated. Feasible strategies to mitigate this risk should include improving ventilation systems through engineering control and limiting the number of indoor occupants and their time staying indoor through administrative control.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.