具有复乘法和无边除法域的椭圆曲线

IF 1 2区 数学 Q1 MATHEMATICS
Asimina S. Hamakiotes, Álvaro Lozano-Robledo
{"title":"具有复乘法和无边除法域的椭圆曲线","authors":"Asimina S. Hamakiotes,&nbsp;Álvaro Lozano-Robledo","doi":"10.1112/jlms.70031","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> be an imaginary quadratic field, and let <span></span><math>\n <semantics>\n <msub>\n <mi>O</mi>\n <mrow>\n <mi>K</mi>\n <mo>,</mo>\n <mi>f</mi>\n </mrow>\n </msub>\n <annotation>$\\mathcal {O}_{K,f}$</annotation>\n </semantics></math> be the order in <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> of conductor <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$f\\geqslant 1$</annotation>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> be an elliptic curve with complex multiplication by <span></span><math>\n <semantics>\n <msub>\n <mi>O</mi>\n <mrow>\n <mi>K</mi>\n <mo>,</mo>\n <mi>f</mi>\n </mrow>\n </msub>\n <annotation>$\\mathcal {O}_{K,f}$</annotation>\n </semantics></math>, such that <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> is defined by a model over <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mo>(</mo>\n <msub>\n <mi>j</mi>\n <mrow>\n <mi>K</mi>\n <mo>,</mo>\n <mi>f</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathbb {Q}(j_{K,f})$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>j</mi>\n <mrow>\n <mi>K</mi>\n <mo>,</mo>\n <mi>f</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mi>j</mi>\n <mrow>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$j_{K,f}=j(E)$</annotation>\n </semantics></math>. In this article, we classify the values of <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$N\\geqslant 2$</annotation>\n </semantics></math> and the elliptic curves <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> such that (i) the division field <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mo>(</mo>\n <msub>\n <mi>j</mi>\n <mrow>\n <mi>K</mi>\n <mo>,</mo>\n <mi>f</mi>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>E</mi>\n <mrow>\n <mo>[</mo>\n <mi>N</mi>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathbb {Q}(j_{K,f},E[N])$</annotation>\n </semantics></math> is an abelian extension of <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mo>(</mo>\n <msub>\n <mi>j</mi>\n <mrow>\n <mi>K</mi>\n <mo>,</mo>\n <mi>f</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathbb {Q}(j_{K,f})$</annotation>\n </semantics></math>, and (ii) the <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-division field coincides with the <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>th cyclotomic extension of the base field.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elliptic curves with complex multiplication and abelian division fields\",\"authors\":\"Asimina S. Hamakiotes,&nbsp;Álvaro Lozano-Robledo\",\"doi\":\"10.1112/jlms.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> be an imaginary quadratic field, and let <span></span><math>\\n <semantics>\\n <msub>\\n <mi>O</mi>\\n <mrow>\\n <mi>K</mi>\\n <mo>,</mo>\\n <mi>f</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\mathcal {O}_{K,f}$</annotation>\\n </semantics></math> be the order in <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> of conductor <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$f\\\\geqslant 1$</annotation>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$E$</annotation>\\n </semantics></math> be an elliptic curve with complex multiplication by <span></span><math>\\n <semantics>\\n <msub>\\n <mi>O</mi>\\n <mrow>\\n <mi>K</mi>\\n <mo>,</mo>\\n <mi>f</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\mathcal {O}_{K,f}$</annotation>\\n </semantics></math>, such that <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$E$</annotation>\\n </semantics></math> is defined by a model over <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Q</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>j</mi>\\n <mrow>\\n <mi>K</mi>\\n <mo>,</mo>\\n <mi>f</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathbb {Q}(j_{K,f})$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>j</mi>\\n <mrow>\\n <mi>K</mi>\\n <mo>,</mo>\\n <mi>f</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mi>j</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$j_{K,f}=j(E)$</annotation>\\n </semantics></math>. In this article, we classify the values of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$N\\\\geqslant 2$</annotation>\\n </semantics></math> and the elliptic curves <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$E$</annotation>\\n </semantics></math> such that (i) the division field <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Q</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>j</mi>\\n <mrow>\\n <mi>K</mi>\\n <mo>,</mo>\\n <mi>f</mi>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <mi>E</mi>\\n <mrow>\\n <mo>[</mo>\\n <mi>N</mi>\\n <mo>]</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathbb {Q}(j_{K,f},E[N])$</annotation>\\n </semantics></math> is an abelian extension of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Q</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>j</mi>\\n <mrow>\\n <mi>K</mi>\\n <mo>,</mo>\\n <mi>f</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathbb {Q}(j_{K,f})$</annotation>\\n </semantics></math>, and (ii) the <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math>-division field coincides with the <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math>th cyclotomic extension of the base field.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 6\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70031\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70031","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 K $K$ 是一个虚二次域,让 O K , f $\mathcal {O}_{K,f}$ 是导体 f ⩾ 1 $f\geqslant 1$ 在 K $K$ 中的阶。让 E $E$ 是一条椭圆曲线,其复数乘法为 O K , f $\mathcal {O}_{K,f}$ ,这样 E $E$ 是由 Q ( j K , f ) $\mathbb {Q}(j_{K,f})$ 上的模型定义的,其中 j K , f = j ( E ) $j_{K,f}=j(E)$ 。在这篇文章中,我们将 N ⩾ 2 $N\geqslant 2$ 的值和椭圆曲线 E $E$ 分类为:(i) 除法域 Q ( j K , f , E [ N ] ) $\mathbb {Q}(j_{K,f},E[N])$ 是 Q ( j K , f ) $\mathbb {Q}(j_{K,f})$ 的无边扩展;(ii) N $N$ - 除法域与基域的 N $N$ th cyclotomic 扩展重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elliptic curves with complex multiplication and abelian division fields

Let K $K$ be an imaginary quadratic field, and let O K , f $\mathcal {O}_{K,f}$ be the order in K $K$ of conductor f 1 $f\geqslant 1$ . Let E $E$ be an elliptic curve with complex multiplication by O K , f $\mathcal {O}_{K,f}$ , such that E $E$ is defined by a model over Q ( j K , f ) $\mathbb {Q}(j_{K,f})$ , where j K , f = j ( E ) $j_{K,f}=j(E)$ . In this article, we classify the values of N 2 $N\geqslant 2$ and the elliptic curves E $E$ such that (i) the division field Q ( j K , f , E [ N ] ) $\mathbb {Q}(j_{K,f},E[N])$ is an abelian extension of Q ( j K , f ) $\mathbb {Q}(j_{K,f})$ , and (ii) the N $N$ -division field coincides with the N $N$ th cyclotomic extension of the base field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信