Aysu Yigit, Muhammed Yilmaz, Aminu Yusuf, Sedat Ballikaya
{"title":"带热能和电能存储的热电发电机-辐射冷却系统的性能提升","authors":"Aysu Yigit, Muhammed Yilmaz, Aminu Yusuf, Sedat Ballikaya","doi":"10.1002/est2.70081","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A thermoelectric generator (TEG) converts thermal energy into electrical energy when temperature gradients are created across its two surfaces. Integrating the TEG with a phase change material (PCM) and radiative cooling (RC) can increase the temperature gradient across its two surfaces. In this study, a two-layer RC paint has been developed and applied to the cold side of a TEG, and its performance was compared with TEG-white paint and TEG-no paint. The RC lowers the temperature of the cold side by 3.5°C and 4.7°C compared to TEGs with white paint and no paint, respectively. Integrating PCM with TEG–RC ensured a high electrical output, enabling continuous power for a typical weather sensor. The PCM–TEG–RC generated 2.7and 0.61 mW during summer and winter days in Istanbul, and nighttime outputs of 0.302 W and 0.395 mW, respectively. Despite similar costs, the electrical performance of TEG–RC was nearly double that of the TEG-white paint. It has also been determined that a storage capacitor with a value of 0.5 F can provide 24-h power backup to the typical weather sensor.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Enhancement of Thermoelectric Generator-Radiative Cooling System With Thermal and Electrical Energy Storage\",\"authors\":\"Aysu Yigit, Muhammed Yilmaz, Aminu Yusuf, Sedat Ballikaya\",\"doi\":\"10.1002/est2.70081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A thermoelectric generator (TEG) converts thermal energy into electrical energy when temperature gradients are created across its two surfaces. Integrating the TEG with a phase change material (PCM) and radiative cooling (RC) can increase the temperature gradient across its two surfaces. In this study, a two-layer RC paint has been developed and applied to the cold side of a TEG, and its performance was compared with TEG-white paint and TEG-no paint. The RC lowers the temperature of the cold side by 3.5°C and 4.7°C compared to TEGs with white paint and no paint, respectively. Integrating PCM with TEG–RC ensured a high electrical output, enabling continuous power for a typical weather sensor. The PCM–TEG–RC generated 2.7and 0.61 mW during summer and winter days in Istanbul, and nighttime outputs of 0.302 W and 0.395 mW, respectively. Despite similar costs, the electrical performance of TEG–RC was nearly double that of the TEG-white paint. It has also been determined that a storage capacitor with a value of 0.5 F can provide 24-h power backup to the typical weather sensor.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"6 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Enhancement of Thermoelectric Generator-Radiative Cooling System With Thermal and Electrical Energy Storage
A thermoelectric generator (TEG) converts thermal energy into electrical energy when temperature gradients are created across its two surfaces. Integrating the TEG with a phase change material (PCM) and radiative cooling (RC) can increase the temperature gradient across its two surfaces. In this study, a two-layer RC paint has been developed and applied to the cold side of a TEG, and its performance was compared with TEG-white paint and TEG-no paint. The RC lowers the temperature of the cold side by 3.5°C and 4.7°C compared to TEGs with white paint and no paint, respectively. Integrating PCM with TEG–RC ensured a high electrical output, enabling continuous power for a typical weather sensor. The PCM–TEG–RC generated 2.7and 0.61 mW during summer and winter days in Istanbul, and nighttime outputs of 0.302 W and 0.395 mW, respectively. Despite similar costs, the electrical performance of TEG–RC was nearly double that of the TEG-white paint. It has also been determined that a storage capacitor with a value of 0.5 F can provide 24-h power backup to the typical weather sensor.