生物组织中非线性超声波传播 k 波模型解的存在性

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Ben Cox, Barbara Kaltenbacher, Vanja Nikolić, Felix Lucka
{"title":"生物组织中非线性超声波传播 k 波模型解的存在性","authors":"Ben Cox,&nbsp;Barbara Kaltenbacher,&nbsp;Vanja Nikolić,&nbsp;Felix Lucka","doi":"10.1111/sapm.12771","DOIUrl":null,"url":null,"abstract":"<p>We investigate models for nonlinear ultrasound propagation in soft biological tissue based on the one that serves as the core for the software package k-Wave. The systems are solved for the acoustic particle velocity, mass density, and acoustic pressure and involve a fractional absorption operator. We first consider a system that incorporates additional viscosity in the equation for momentum conservation. By constructing a Galerkin approximation procedure, we prove the local existence of its solutions. In view of inverse problems arising from imaging tasks, the theory allows for the variable background mass density, speed of sound, and the nonlinearity parameter in the systems. Second, under stronger conditions on the data, we take the vanishing viscosity limit of the problem, thereby rigorously establishing the existence of solutions for the limiting system as well.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12771","citationCount":"0","resultStr":"{\"title\":\"Existence of solutions to k-Wave models of nonlinear ultrasound propagation in biological tissue\",\"authors\":\"Ben Cox,&nbsp;Barbara Kaltenbacher,&nbsp;Vanja Nikolić,&nbsp;Felix Lucka\",\"doi\":\"10.1111/sapm.12771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate models for nonlinear ultrasound propagation in soft biological tissue based on the one that serves as the core for the software package k-Wave. The systems are solved for the acoustic particle velocity, mass density, and acoustic pressure and involve a fractional absorption operator. We first consider a system that incorporates additional viscosity in the equation for momentum conservation. By constructing a Galerkin approximation procedure, we prove the local existence of its solutions. In view of inverse problems arising from imaging tasks, the theory allows for the variable background mass density, speed of sound, and the nonlinearity parameter in the systems. Second, under stronger conditions on the data, we take the vanishing viscosity limit of the problem, thereby rigorously establishing the existence of solutions for the limiting system as well.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"153 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12771\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12771\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12771","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们以 k-Wave 软件包的核心模型为基础,研究了非线性超声波在软生物组织中传播的模型。这些系统求解声粒子速度、质量密度和声压,并涉及分数吸收算子。我们首先考虑在动量守恒方程中加入额外粘性的系统。通过构建伽勒金近似程序,我们证明了其解的局部存在性。考虑到成像任务中出现的逆问题,该理论允许系统中的背景质量密度、声速和非线性参数可变。其次,在数据条件较强的情况下,我们对问题进行了粘度消失极限处理,从而严格确定了极限系统解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Existence of solutions to k-Wave models of nonlinear ultrasound propagation in biological tissue

Existence of solutions to k-Wave models of nonlinear ultrasound propagation in biological tissue

We investigate models for nonlinear ultrasound propagation in soft biological tissue based on the one that serves as the core for the software package k-Wave. The systems are solved for the acoustic particle velocity, mass density, and acoustic pressure and involve a fractional absorption operator. We first consider a system that incorporates additional viscosity in the equation for momentum conservation. By constructing a Galerkin approximation procedure, we prove the local existence of its solutions. In view of inverse problems arising from imaging tasks, the theory allows for the variable background mass density, speed of sound, and the nonlinearity parameter in the systems. Second, under stronger conditions on the data, we take the vanishing viscosity limit of the problem, thereby rigorously establishing the existence of solutions for the limiting system as well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信