钪蜕变的 [6]Cycloparaphenylene 中的室温可逆氢存储:计算见解

Energy Storage Pub Date : 2024-11-10 DOI:10.1002/est2.70093
Smruti Ranjan Parida, Rakesh Kumar Sahoo, Ankita Jaiswal, Paramjit Kour, Brahmananda Chakraborty, Sridhar Sahu
{"title":"钪蜕变的 [6]Cycloparaphenylene 中的室温可逆氢存储:计算见解","authors":"Smruti Ranjan Parida,&nbsp;Rakesh Kumar Sahoo,&nbsp;Ankita Jaiswal,&nbsp;Paramjit Kour,&nbsp;Brahmananda Chakraborty,&nbsp;Sridhar Sahu","doi":"10.1002/est2.70093","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study discusses the hydrogen storage and delivery capacity of Sc-decorated [6]cycloparaphenylene ([6]CPP) using dispersion-corrected density functional theory calculations (DFT + D3). The scandium atoms are decorated over [6]CPP via Dewar coordination with an average binding energy of 1.33 eV. Each Sc atom stores up to 5H<sub>2</sub> molecules in quasi-molecular form at an average adsorption energy ranging from 0.23 to 0.36 eV/H<sub>2</sub>. The system's stability before and after H<sub>2</sub> adsorption is checked using reactivity parameters. The maximum hydrogen gravimetric capacity of the system is found to be 7.68 wt% at low temperatures at 1–60 bar pressure. With an increase in temperature (300–420 K), the gravimetric density is more than 5.5 wt% (US-DOE target) below 60 bar. Atom-Centered Density Matrix Propagation (ADMP)-molecular dynamics (MD) simulations reveal that the desorption of H<sub>2</sub> molecules from [6]CPP starts at around 300 K/1 bar, and complete desorption occurs above 480 K. The minimum Van't Hoff desorption temperature for [6]CPP-Sc is 296.9 K at 1 atm pressure. Insignificant change in the structure of [6]CPP-Sc during adsorption and desorption processes promises stability and reversibility of the system. Hence, we believe that Sc-decorated [6]CPP can be a promising candidate for hydrogen storage applications.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-Temperature Reversible Hydrogen Storage in Scandium-Decorated [6]Cycloparaphenylene: Computational Insights\",\"authors\":\"Smruti Ranjan Parida,&nbsp;Rakesh Kumar Sahoo,&nbsp;Ankita Jaiswal,&nbsp;Paramjit Kour,&nbsp;Brahmananda Chakraborty,&nbsp;Sridhar Sahu\",\"doi\":\"10.1002/est2.70093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study discusses the hydrogen storage and delivery capacity of Sc-decorated [6]cycloparaphenylene ([6]CPP) using dispersion-corrected density functional theory calculations (DFT + D3). The scandium atoms are decorated over [6]CPP via Dewar coordination with an average binding energy of 1.33 eV. Each Sc atom stores up to 5H<sub>2</sub> molecules in quasi-molecular form at an average adsorption energy ranging from 0.23 to 0.36 eV/H<sub>2</sub>. The system's stability before and after H<sub>2</sub> adsorption is checked using reactivity parameters. The maximum hydrogen gravimetric capacity of the system is found to be 7.68 wt% at low temperatures at 1–60 bar pressure. With an increase in temperature (300–420 K), the gravimetric density is more than 5.5 wt% (US-DOE target) below 60 bar. Atom-Centered Density Matrix Propagation (ADMP)-molecular dynamics (MD) simulations reveal that the desorption of H<sub>2</sub> molecules from [6]CPP starts at around 300 K/1 bar, and complete desorption occurs above 480 K. The minimum Van't Hoff desorption temperature for [6]CPP-Sc is 296.9 K at 1 atm pressure. Insignificant change in the structure of [6]CPP-Sc during adsorption and desorption processes promises stability and reversibility of the system. Hence, we believe that Sc-decorated [6]CPP can be a promising candidate for hydrogen storage applications.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"6 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用色散校正密度泛函理论计算(DFT + D3)讨论了钪装饰[6]环联苯([6]CPP)的储氢和输氢能力。钪原子通过杜瓦配位装饰在 [6]CPP 上,平均结合能为 1.33 eV。每个钪原子以准分子形式储存多达 5 个 H2 分子,平均吸附能在 0.23 至 0.36 eV/H2 之间。利用反应性参数检测了系统在吸附 H2 前后的稳定性。结果发现,在低温、1-60 巴压力下,该系统的最大氢重力容量为 7.68 wt%。随着温度的升高(300-420 K),在低于 60 bar 的压力下,氢的重量密度超过 5.5 wt%(US-DOE 目标)。原子中心密度矩阵传播(ADMP)-分子动力学(MD)模拟显示,[6]CPP 中的 H2 分子在 300 K/1 bar 左右开始解吸,在 480 K 以上完全解吸。在吸附和解吸过程中,[6]CPP-Sc 的结构变化不大,这表明该体系具有稳定性和可逆性。因此,我们认为掺杂了鳞片的 [6]CPP 有希望成为储氢应用的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Room-Temperature Reversible Hydrogen Storage in Scandium-Decorated [6]Cycloparaphenylene: Computational Insights

Room-Temperature Reversible Hydrogen Storage in Scandium-Decorated [6]Cycloparaphenylene: Computational Insights

This study discusses the hydrogen storage and delivery capacity of Sc-decorated [6]cycloparaphenylene ([6]CPP) using dispersion-corrected density functional theory calculations (DFT + D3). The scandium atoms are decorated over [6]CPP via Dewar coordination with an average binding energy of 1.33 eV. Each Sc atom stores up to 5H2 molecules in quasi-molecular form at an average adsorption energy ranging from 0.23 to 0.36 eV/H2. The system's stability before and after H2 adsorption is checked using reactivity parameters. The maximum hydrogen gravimetric capacity of the system is found to be 7.68 wt% at low temperatures at 1–60 bar pressure. With an increase in temperature (300–420 K), the gravimetric density is more than 5.5 wt% (US-DOE target) below 60 bar. Atom-Centered Density Matrix Propagation (ADMP)-molecular dynamics (MD) simulations reveal that the desorption of H2 molecules from [6]CPP starts at around 300 K/1 bar, and complete desorption occurs above 480 K. The minimum Van't Hoff desorption temperature for [6]CPP-Sc is 296.9 K at 1 atm pressure. Insignificant change in the structure of [6]CPP-Sc during adsorption and desorption processes promises stability and reversibility of the system. Hence, we believe that Sc-decorated [6]CPP can be a promising candidate for hydrogen storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信