İsmail Yabanova, Zekeriya Balcı, Mehmet Yumurtacı, Tarık Ünler
{"title":"利用声学信号进行基于自动编码器的蛋壳裂纹检测","authors":"İsmail Yabanova, Zekeriya Balcı, Mehmet Yumurtacı, Tarık Ünler","doi":"10.1111/jfpe.14780","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Breaks or cracks in eggshells offer substantial food safety issues. Bacteria and viruses, in particular, are more likely to enter the egg through breaks and cracks, increasing the risk of food poisoning. Furthermore, deformations in the shell may compromise the integrity of the protective shell, exposing the egg to more external variables and causing it to lose freshness and decay faster. To reduce such hazards, this research created an innovative crack detection system based on an autoencoder (AE) that uses acoustic signals from eggshells. A system that creates an acoustic effect by hitting the eggshell without damaging it was designed, and these effects were recorded through a microphone. Acoustic signal data of size 1 × 1000 was fed into k nearest neighbor (kNN), decision tree (DT), and support vector machine (SVM) classifiers. AE was employed to reduce data size in order to accommodate the raw data's unique features. This AE model, which reduces data size, was used with many classifiers and was able to accurately distinguish between intact and cracked eggs. The built AE-based classifier model completed the classification procedure with 100% accuracy, including microcracks that are invisible to the naked eye.</p>\n </div>","PeriodicalId":15932,"journal":{"name":"Journal of Food Process Engineering","volume":"47 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autoencoder-Based Eggshell Crack Detection Using Acoustic Signal\",\"authors\":\"İsmail Yabanova, Zekeriya Balcı, Mehmet Yumurtacı, Tarık Ünler\",\"doi\":\"10.1111/jfpe.14780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Breaks or cracks in eggshells offer substantial food safety issues. Bacteria and viruses, in particular, are more likely to enter the egg through breaks and cracks, increasing the risk of food poisoning. Furthermore, deformations in the shell may compromise the integrity of the protective shell, exposing the egg to more external variables and causing it to lose freshness and decay faster. To reduce such hazards, this research created an innovative crack detection system based on an autoencoder (AE) that uses acoustic signals from eggshells. A system that creates an acoustic effect by hitting the eggshell without damaging it was designed, and these effects were recorded through a microphone. Acoustic signal data of size 1 × 1000 was fed into k nearest neighbor (kNN), decision tree (DT), and support vector machine (SVM) classifiers. AE was employed to reduce data size in order to accommodate the raw data's unique features. This AE model, which reduces data size, was used with many classifiers and was able to accurately distinguish between intact and cracked eggs. The built AE-based classifier model completed the classification procedure with 100% accuracy, including microcracks that are invisible to the naked eye.</p>\\n </div>\",\"PeriodicalId\":15932,\"journal\":{\"name\":\"Journal of Food Process Engineering\",\"volume\":\"47 11\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Process Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14780\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Process Engineering","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14780","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Autoencoder-Based Eggshell Crack Detection Using Acoustic Signal
Breaks or cracks in eggshells offer substantial food safety issues. Bacteria and viruses, in particular, are more likely to enter the egg through breaks and cracks, increasing the risk of food poisoning. Furthermore, deformations in the shell may compromise the integrity of the protective shell, exposing the egg to more external variables and causing it to lose freshness and decay faster. To reduce such hazards, this research created an innovative crack detection system based on an autoencoder (AE) that uses acoustic signals from eggshells. A system that creates an acoustic effect by hitting the eggshell without damaging it was designed, and these effects were recorded through a microphone. Acoustic signal data of size 1 × 1000 was fed into k nearest neighbor (kNN), decision tree (DT), and support vector machine (SVM) classifiers. AE was employed to reduce data size in order to accommodate the raw data's unique features. This AE model, which reduces data size, was used with many classifiers and was able to accurately distinguish between intact and cracked eggs. The built AE-based classifier model completed the classification procedure with 100% accuracy, including microcracks that are invisible to the naked eye.
期刊介绍:
This international research journal focuses on the engineering aspects of post-production handling, storage, processing, packaging, and distribution of food. Read by researchers, food and chemical engineers, and industry experts, this is the only international journal specifically devoted to the engineering aspects of food processing. Co-Editors M. Elena Castell-Perez and Rosana Moreira, both of Texas A&M University, welcome papers covering the best original research on applications of engineering principles and concepts to food and food processes.