利用短波红外反射波段的信息加强基于卫星的初级生产力总值估算

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Sadegh Ranjbar, Danielle Losos, Benjamin Dechant, Sophie Hoffman, Eyyup Ensar Başakın, Paul C. Stoy
{"title":"利用短波红外反射波段的信息加强基于卫星的初级生产力总值估算","authors":"Sadegh Ranjbar,&nbsp;Danielle Losos,&nbsp;Benjamin Dechant,&nbsp;Sophie Hoffman,&nbsp;Eyyup Ensar Başakın,&nbsp;Paul C. Stoy","doi":"10.1029/2024JG008240","DOIUrl":null,"url":null,"abstract":"<p>Monitoring gross primary productivity (GPP), the rate at which terrestrial ecosystems fix atmospheric carbon dioxide, is crucial for understanding global carbon cycling. Remote sensing offers a powerful tool for monitoring GPP using vegetation indices (VIs) derived from visible and near-infrared reflectance (NIRv). While promising, these VIs often suffer from sensitivity to soil background, moisture, and variations in solar and view zenith angle (SZA and VZA). This study investigates the potential of incorporating shortwave infrared (SWIR) reflectance from MODIS and GOES-R advanced baseline imager (ABI) sensors to improve GPP estimation. We evaluated various formulations for creating <b>S</b>WIR-enhanced <b>N</b>ear-<b>I</b>nfra<b>R</b>ed reflectance of <b>V</b>egetation (sNIRv) by integrating SWIR information into established VIs across 96 Ameriflux and NEON research sites. Our findings reveal that sNIRv improves correlation with GPP for ABI data by up to 0.19 on a half-hourly basis for normalized difference vegetation index (NDVI) values below 0.25, with diminishing gains as NDVI values rise. Using MODIS data, sNIRv matches <i>r</i> values of NIRv for NDVI above 0.25, with a slight 0.05 increase for NDVI below 0.25. Analyses using SCOPE model simulations further support the ability of sNIRv to capture fractional photosynthetically active radiation, a proxy for GPP, especially for ecosystems with low leaf area index. Results highlight that sNIRv-based VIs are less sensitive to soil background, SZA, and VZA compared to NIRv. SHapley Additive exPlanations (SHAP) value analysis also identifies sNIRv as the best feature for GPP estimation using machine learning modeling across different land covers, NDVI ranges, and soil water content levels.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008240","citationCount":"0","resultStr":"{\"title\":\"Harnessing Information From Shortwave Infrared Reflectance Bands to Enhance Satellite-Based Estimates of Gross Primary Productivity\",\"authors\":\"Sadegh Ranjbar,&nbsp;Danielle Losos,&nbsp;Benjamin Dechant,&nbsp;Sophie Hoffman,&nbsp;Eyyup Ensar Başakın,&nbsp;Paul C. Stoy\",\"doi\":\"10.1029/2024JG008240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Monitoring gross primary productivity (GPP), the rate at which terrestrial ecosystems fix atmospheric carbon dioxide, is crucial for understanding global carbon cycling. Remote sensing offers a powerful tool for monitoring GPP using vegetation indices (VIs) derived from visible and near-infrared reflectance (NIRv). While promising, these VIs often suffer from sensitivity to soil background, moisture, and variations in solar and view zenith angle (SZA and VZA). This study investigates the potential of incorporating shortwave infrared (SWIR) reflectance from MODIS and GOES-R advanced baseline imager (ABI) sensors to improve GPP estimation. We evaluated various formulations for creating <b>S</b>WIR-enhanced <b>N</b>ear-<b>I</b>nfra<b>R</b>ed reflectance of <b>V</b>egetation (sNIRv) by integrating SWIR information into established VIs across 96 Ameriflux and NEON research sites. Our findings reveal that sNIRv improves correlation with GPP for ABI data by up to 0.19 on a half-hourly basis for normalized difference vegetation index (NDVI) values below 0.25, with diminishing gains as NDVI values rise. Using MODIS data, sNIRv matches <i>r</i> values of NIRv for NDVI above 0.25, with a slight 0.05 increase for NDVI below 0.25. Analyses using SCOPE model simulations further support the ability of sNIRv to capture fractional photosynthetically active radiation, a proxy for GPP, especially for ecosystems with low leaf area index. Results highlight that sNIRv-based VIs are less sensitive to soil background, SZA, and VZA compared to NIRv. SHapley Additive exPlanations (SHAP) value analysis also identifies sNIRv as the best feature for GPP estimation using machine learning modeling across different land covers, NDVI ranges, and soil water content levels.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":\"129 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008240\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008240\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008240","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

监测总初级生产力(GPP),即陆地生态系统固定大气中二氧化碳的速率,对于了解全球碳循环至关重要。利用从可见光和近红外反射率(NIRv)中得出的植被指数(VIs),遥感技术为监测 GPP 提供了一个强大的工具。这些植被指数虽然前景广阔,但往往对土壤背景、湿度以及太阳和视场天顶角(SZA 和 VZA)的变化非常敏感。本研究探讨了将 MODIS 和 GOES-R 高级基线成像仪(ABI)传感器的短波红外(SWIR)反射率用于改进 GPP 估算的可能性。通过将 SWIR 信息整合到 96 个 Ameriflux 和 NEON 研究站点的既定 VI 中,我们评估了创建 SWIR 增强型近红外植被反射率(sNIRv)的各种方案。我们的研究结果表明,当归一化差异植被指数(NDVI)值低于 0.25 时,sNIRv 与 ABI 数据的 GPP 相关性每半小时最多可提高 0.19,随着 NDVI 值的上升,相关性会逐渐降低。使用 MODIS 数据,当归一化差异植被指数高于 0.25 时,sNIRv 与 NIRv 的 r 值相匹配,当归一化差异植被指数低于 0.25 时,sNIRv 略微增加 0.05。利用 SCOPE 模型模拟进行的分析进一步支持了 sNIRv 捕获光合有效辐射分数(GPP 的替代值)的能力,尤其是在叶面积指数较低的生态系统中。结果表明,与 NIRv 相比,基于 sNIRv 的 VI 对土壤背景、SZA 和 VZA 的敏感性较低。此外,SHAPLEY Additive exPlanations (SHAP) 值分析还确定了 sNIRv 是利用机器学习建模估算不同土地覆盖、NDVI 范围和土壤含水量水平下 GPP 的最佳特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harnessing Information From Shortwave Infrared Reflectance Bands to Enhance Satellite-Based Estimates of Gross Primary Productivity

Harnessing Information From Shortwave Infrared Reflectance Bands to Enhance Satellite-Based Estimates of Gross Primary Productivity

Monitoring gross primary productivity (GPP), the rate at which terrestrial ecosystems fix atmospheric carbon dioxide, is crucial for understanding global carbon cycling. Remote sensing offers a powerful tool for monitoring GPP using vegetation indices (VIs) derived from visible and near-infrared reflectance (NIRv). While promising, these VIs often suffer from sensitivity to soil background, moisture, and variations in solar and view zenith angle (SZA and VZA). This study investigates the potential of incorporating shortwave infrared (SWIR) reflectance from MODIS and GOES-R advanced baseline imager (ABI) sensors to improve GPP estimation. We evaluated various formulations for creating SWIR-enhanced Near-InfraRed reflectance of Vegetation (sNIRv) by integrating SWIR information into established VIs across 96 Ameriflux and NEON research sites. Our findings reveal that sNIRv improves correlation with GPP for ABI data by up to 0.19 on a half-hourly basis for normalized difference vegetation index (NDVI) values below 0.25, with diminishing gains as NDVI values rise. Using MODIS data, sNIRv matches r values of NIRv for NDVI above 0.25, with a slight 0.05 increase for NDVI below 0.25. Analyses using SCOPE model simulations further support the ability of sNIRv to capture fractional photosynthetically active radiation, a proxy for GPP, especially for ecosystems with low leaf area index. Results highlight that sNIRv-based VIs are less sensitive to soil background, SZA, and VZA compared to NIRv. SHapley Additive exPlanations (SHAP) value analysis also identifies sNIRv as the best feature for GPP estimation using machine learning modeling across different land covers, NDVI ranges, and soil water content levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信