野火对温度指数雪堆模型参数的影响

IF 3.2 3区 地球科学 Q1 Environmental Science
Jeremy Giovando, Jeffrey D. Niemann, Steven R. Fassnacht
{"title":"野火对温度指数雪堆模型参数的影响","authors":"Jeremy Giovando,&nbsp;Jeffrey D. Niemann,&nbsp;Steven R. Fassnacht","doi":"10.1002/hyp.15334","DOIUrl":null,"url":null,"abstract":"<p>Streamflow derived from snowmelt is a key source of water for communities and agricultural producers in the western U.S. As wildfires become larger and more frequent in the West (due in part to climate change), it is increasingly important to understand their potential impacts on snowpack. Temperature-index models remain widely used to simulate snowpack in post-wildfire assessments due to their low data requirements. However, there is limited information on how the key parameters of such models change due to wildfires. The objectives of this study are to (1) quantify the observed changes in the melt-rate function and the rain-snow temperature threshold due to wildfires and (2) develop methods to adjust the melt-rate function and rain-snow temperature threshold (or Px Temperature) to simulate the potential impacts of wildfires on snowpack. To accomplish these goals, snow water equivalent data from 42 SNOTEL sites that have been impacted by wildfire are used to estimate the changes in the melt-rate functions and Px Temperatures between the pre-and post-wildfire periods. Then, general linear models (GLMs) are developed to estimate the changes in the model parameters based on readily available topographic, climatic, and land cover information. The results indicate that late season melt-rates typically increase after a wildfire for sites in northern and central ecoregions of the western U.S. Px Temperature also changes for many sites, but the direction and magnitude of change is highly variable between sites. Nearly all the GLMs can estimate the observed parameter changes better than simply using the average observed changes. However, substantial variation in the parameter values is not explained by the GLMs.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 11","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.15334","citationCount":"0","resultStr":"{\"title\":\"Wildfire Impacts for Temperature Index Snowpack Model Parameters\",\"authors\":\"Jeremy Giovando,&nbsp;Jeffrey D. Niemann,&nbsp;Steven R. Fassnacht\",\"doi\":\"10.1002/hyp.15334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Streamflow derived from snowmelt is a key source of water for communities and agricultural producers in the western U.S. As wildfires become larger and more frequent in the West (due in part to climate change), it is increasingly important to understand their potential impacts on snowpack. Temperature-index models remain widely used to simulate snowpack in post-wildfire assessments due to their low data requirements. However, there is limited information on how the key parameters of such models change due to wildfires. The objectives of this study are to (1) quantify the observed changes in the melt-rate function and the rain-snow temperature threshold due to wildfires and (2) develop methods to adjust the melt-rate function and rain-snow temperature threshold (or Px Temperature) to simulate the potential impacts of wildfires on snowpack. To accomplish these goals, snow water equivalent data from 42 SNOTEL sites that have been impacted by wildfire are used to estimate the changes in the melt-rate functions and Px Temperatures between the pre-and post-wildfire periods. Then, general linear models (GLMs) are developed to estimate the changes in the model parameters based on readily available topographic, climatic, and land cover information. The results indicate that late season melt-rates typically increase after a wildfire for sites in northern and central ecoregions of the western U.S. Px Temperature also changes for many sites, but the direction and magnitude of change is highly variable between sites. Nearly all the GLMs can estimate the observed parameter changes better than simply using the average observed changes. However, substantial variation in the parameter values is not explained by the GLMs.</p>\",\"PeriodicalId\":13189,\"journal\":{\"name\":\"Hydrological Processes\",\"volume\":\"38 11\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.15334\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15334\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15334","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

随着西部地区野火的规模越来越大、频率越来越高(部分原因是气候变化),了解野火对积雪的潜在影响变得越来越重要。温度指数模型由于对数据要求不高,在野火后评估中仍被广泛用于模拟积雪。然而,关于此类模型的关键参数如何因野火而发生变化的信息却很有限。本研究的目标是:(1)量化观测到的野火导致的融化率函数和雨雪温度阈值的变化;(2)开发调整融化率函数和雨雪温度阈值(或 Px 温度)的方法,以模拟野火对积雪的潜在影响。为了实现这些目标,我们使用了 42 个受野火影响的 SNOTEL 站点的雪水当量数据来估算野火前后融化率函数和 Px 温度的变化。然后,根据现成的地形、气候和土地覆盖信息,建立一般线性模型(GLM)来估算模型参数的变化。结果表明,野火过后,美国西部北部和中部生态区的晚季融化率通常会增加,许多地点的 Px 温度也会发生变化,但不同地点的变化方向和幅度差异很大。几乎所有的 GLM 都能更好地估计观测到的参数变化,而不是简单地使用观测到的平均变化。然而,GLM 无法解释参数值的巨大变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wildfire Impacts for Temperature Index Snowpack Model Parameters

Wildfire Impacts for Temperature Index Snowpack Model Parameters

Streamflow derived from snowmelt is a key source of water for communities and agricultural producers in the western U.S. As wildfires become larger and more frequent in the West (due in part to climate change), it is increasingly important to understand their potential impacts on snowpack. Temperature-index models remain widely used to simulate snowpack in post-wildfire assessments due to their low data requirements. However, there is limited information on how the key parameters of such models change due to wildfires. The objectives of this study are to (1) quantify the observed changes in the melt-rate function and the rain-snow temperature threshold due to wildfires and (2) develop methods to adjust the melt-rate function and rain-snow temperature threshold (or Px Temperature) to simulate the potential impacts of wildfires on snowpack. To accomplish these goals, snow water equivalent data from 42 SNOTEL sites that have been impacted by wildfire are used to estimate the changes in the melt-rate functions and Px Temperatures between the pre-and post-wildfire periods. Then, general linear models (GLMs) are developed to estimate the changes in the model parameters based on readily available topographic, climatic, and land cover information. The results indicate that late season melt-rates typically increase after a wildfire for sites in northern and central ecoregions of the western U.S. Px Temperature also changes for many sites, but the direction and magnitude of change is highly variable between sites. Nearly all the GLMs can estimate the observed parameter changes better than simply using the average observed changes. However, substantial variation in the parameter values is not explained by the GLMs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信