Xu Zhou, Libo Liu, Xinan Yue, Guiwan Chen, Xian Lu
{"title":"利用 Mohe 流星雷达观测数据观测到的重力波动量通量对热带外中层顶附近马登-朱利安涛动的响应","authors":"Xu Zhou, Libo Liu, Xinan Yue, Guiwan Chen, Xian Lu","doi":"10.1029/2024JD041447","DOIUrl":null,"url":null,"abstract":"<p>The 12-year continuous observation of gravity wave momentum fluxes (GWMFs) estimated by the Mohe meteor radar (53.5°N, 122.3°E) revealed prominent intraseasonal variability around the extratropical mesopause (82–94 km) during boreal winters. Composite analysis of the December‒January‒February (DJF) season according to the Madden‒Julian Oscillation (MJO) phases revealed that the zonal GWMFs notably increased in MJO Phase 4 (P4) by ∼2–4 m<sup>2</sup>/s<sup>2</sup>, and a Monte Carlo test was designed to examine the statistical significance. The response in zonal winds lags behind the GWMF response by two MJO phases (i.e., 1/2π), indicating a “force‒response” interaction between them. Additionally, time-lagged composites revealed that strengthened westward GWMFs occurred ∼25–35 days after MJO P4, coincident with the MJO impact on the zonal winds in the stratosphere. The analysis results also suggested that the mechanism of MJO by which the MJO influences the stratospheric circulation might involve poleward propagating effects of stationary planetary waves with zonal wavenumber one. This work emphasizes the importance of GW intraseasonal variability, which impacts tropical sources from the troposphere to the extratropical mesopause.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 21","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041447","citationCount":"0","resultStr":"{\"title\":\"Observed Responses of Gravity Wave Momentum Fluxes to the Madden‒Julian Oscillation Around the Extratropical Mesopause Using Mohe Meteor Radar Observations\",\"authors\":\"Xu Zhou, Libo Liu, Xinan Yue, Guiwan Chen, Xian Lu\",\"doi\":\"10.1029/2024JD041447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The 12-year continuous observation of gravity wave momentum fluxes (GWMFs) estimated by the Mohe meteor radar (53.5°N, 122.3°E) revealed prominent intraseasonal variability around the extratropical mesopause (82–94 km) during boreal winters. Composite analysis of the December‒January‒February (DJF) season according to the Madden‒Julian Oscillation (MJO) phases revealed that the zonal GWMFs notably increased in MJO Phase 4 (P4) by ∼2–4 m<sup>2</sup>/s<sup>2</sup>, and a Monte Carlo test was designed to examine the statistical significance. The response in zonal winds lags behind the GWMF response by two MJO phases (i.e., 1/2π), indicating a “force‒response” interaction between them. Additionally, time-lagged composites revealed that strengthened westward GWMFs occurred ∼25–35 days after MJO P4, coincident with the MJO impact on the zonal winds in the stratosphere. The analysis results also suggested that the mechanism of MJO by which the MJO influences the stratospheric circulation might involve poleward propagating effects of stationary planetary waves with zonal wavenumber one. This work emphasizes the importance of GW intraseasonal variability, which impacts tropical sources from the troposphere to the extratropical mesopause.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"129 21\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041447\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041447\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041447","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Observed Responses of Gravity Wave Momentum Fluxes to the Madden‒Julian Oscillation Around the Extratropical Mesopause Using Mohe Meteor Radar Observations
The 12-year continuous observation of gravity wave momentum fluxes (GWMFs) estimated by the Mohe meteor radar (53.5°N, 122.3°E) revealed prominent intraseasonal variability around the extratropical mesopause (82–94 km) during boreal winters. Composite analysis of the December‒January‒February (DJF) season according to the Madden‒Julian Oscillation (MJO) phases revealed that the zonal GWMFs notably increased in MJO Phase 4 (P4) by ∼2–4 m2/s2, and a Monte Carlo test was designed to examine the statistical significance. The response in zonal winds lags behind the GWMF response by two MJO phases (i.e., 1/2π), indicating a “force‒response” interaction between them. Additionally, time-lagged composites revealed that strengthened westward GWMFs occurred ∼25–35 days after MJO P4, coincident with the MJO impact on the zonal winds in the stratosphere. The analysis results also suggested that the mechanism of MJO by which the MJO influences the stratospheric circulation might involve poleward propagating effects of stationary planetary waves with zonal wavenumber one. This work emphasizes the importance of GW intraseasonal variability, which impacts tropical sources from the troposphere to the extratropical mesopause.
期刊介绍:
JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.