Rowan H. McGinley, Reginald B. Cocroft, Damian O. Elias, Elizabeth Redle, Jenna Gorlewicz, Kasey D. Fowler-Finn
{"title":"利用扫描激光测振仪量化基底振动的复杂传递过程","authors":"Rowan H. McGinley, Reginald B. Cocroft, Damian O. Elias, Elizabeth Redle, Jenna Gorlewicz, Kasey D. Fowler-Finn","doi":"10.1111/eea.13501","DOIUrl":null,"url":null,"abstract":"<p>Substrate-borne vibrations are ubiquitous in nature and are used by diverse taxa to communicate and to obtain information about their environments. However, substrate-borne vibrations remain understudied compared with other sensory and signaling modalities, in part due to human sensory biases. In addition, understanding and quantifying the transmission of vibrations remains a challenging task due to it being dependent on both signal properties and properties of the substrates that the signals transmit through. Here, we provide methods for playing back and measuring the transmission of vibrations throughout a substrate. Using linear resonant actuators, we conducted playbacks of pure tones and frequency sweeps on wooden dowels and on the stems of potted <i>Ptelea trifoliata</i> L. (Rutaceae) plants. We used scanning laser Doppler vibrometry to measure the signals at multiple locations along the length of the dowels and plant stems. We demonstrate that playback of a frequency sweep yields more data in a shorter amount of time than multiple playbacks and measurements of pure tone signals. Our results are also consistent with previous findings showing that signals produce frequency and location specific minima and maxima (nodes and antinodes) throughout the substrates, rather than simply attenuating with distance. This results in filtering of signals, such that their spectra are unique at any given measurement location—illustrating the importance of measuring vibrations at multiple locations. We discuss the implications of such filtering phenomena for vibrationally signaling animals and the biotremologists that study them.</p>","PeriodicalId":11741,"journal":{"name":"Entomologia Experimentalis et Applicata","volume":"172 12","pages":"1184-1195"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eea.13501","citationCount":"0","resultStr":"{\"title\":\"Quantifying the complex transmission of substrate-borne vibrations with scanning laser vibrometry\",\"authors\":\"Rowan H. McGinley, Reginald B. Cocroft, Damian O. Elias, Elizabeth Redle, Jenna Gorlewicz, Kasey D. Fowler-Finn\",\"doi\":\"10.1111/eea.13501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Substrate-borne vibrations are ubiquitous in nature and are used by diverse taxa to communicate and to obtain information about their environments. However, substrate-borne vibrations remain understudied compared with other sensory and signaling modalities, in part due to human sensory biases. In addition, understanding and quantifying the transmission of vibrations remains a challenging task due to it being dependent on both signal properties and properties of the substrates that the signals transmit through. Here, we provide methods for playing back and measuring the transmission of vibrations throughout a substrate. Using linear resonant actuators, we conducted playbacks of pure tones and frequency sweeps on wooden dowels and on the stems of potted <i>Ptelea trifoliata</i> L. (Rutaceae) plants. We used scanning laser Doppler vibrometry to measure the signals at multiple locations along the length of the dowels and plant stems. We demonstrate that playback of a frequency sweep yields more data in a shorter amount of time than multiple playbacks and measurements of pure tone signals. Our results are also consistent with previous findings showing that signals produce frequency and location specific minima and maxima (nodes and antinodes) throughout the substrates, rather than simply attenuating with distance. This results in filtering of signals, such that their spectra are unique at any given measurement location—illustrating the importance of measuring vibrations at multiple locations. We discuss the implications of such filtering phenomena for vibrationally signaling animals and the biotremologists that study them.</p>\",\"PeriodicalId\":11741,\"journal\":{\"name\":\"Entomologia Experimentalis et Applicata\",\"volume\":\"172 12\",\"pages\":\"1184-1195\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eea.13501\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entomologia Experimentalis et Applicata\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eea.13501\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entomologia Experimentalis et Applicata","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eea.13501","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Quantifying the complex transmission of substrate-borne vibrations with scanning laser vibrometry
Substrate-borne vibrations are ubiquitous in nature and are used by diverse taxa to communicate and to obtain information about their environments. However, substrate-borne vibrations remain understudied compared with other sensory and signaling modalities, in part due to human sensory biases. In addition, understanding and quantifying the transmission of vibrations remains a challenging task due to it being dependent on both signal properties and properties of the substrates that the signals transmit through. Here, we provide methods for playing back and measuring the transmission of vibrations throughout a substrate. Using linear resonant actuators, we conducted playbacks of pure tones and frequency sweeps on wooden dowels and on the stems of potted Ptelea trifoliata L. (Rutaceae) plants. We used scanning laser Doppler vibrometry to measure the signals at multiple locations along the length of the dowels and plant stems. We demonstrate that playback of a frequency sweep yields more data in a shorter amount of time than multiple playbacks and measurements of pure tone signals. Our results are also consistent with previous findings showing that signals produce frequency and location specific minima and maxima (nodes and antinodes) throughout the substrates, rather than simply attenuating with distance. This results in filtering of signals, such that their spectra are unique at any given measurement location—illustrating the importance of measuring vibrations at multiple locations. We discuss the implications of such filtering phenomena for vibrationally signaling animals and the biotremologists that study them.
期刊介绍:
Entomologia Experimentalis et Applicata publishes top quality original research papers in the fields of experimental biology and ecology of insects and other terrestrial arthropods, with both pure and applied scopes. Mini-reviews, technical notes and media reviews are also published. Although the scope of the journal covers the entire scientific field of entomology, it has established itself as the preferred medium for the communication of results in the areas of the physiological, ecological, and morphological inter-relations between phytophagous arthropods and their food plants, their parasitoids, predators, and pathogens. Examples of specific areas that are covered frequently are:
host-plant selection mechanisms
chemical and sensory ecology and infochemicals
parasitoid-host interactions
behavioural ecology
biosystematics
(co-)evolution
migration and dispersal
population modelling
sampling strategies
developmental and behavioural responses to photoperiod and temperature
nutrition
natural and transgenic plant resistance.