{"title":"无霜空气源热泵弱酸-盐混合溶液平衡蒸汽压力的实验研究","authors":"Hongshuo Qu, Libo Wang, Xiao Zhang, Xiaosong Zhang and Shifang Huang*, ","doi":"10.1021/acs.jced.4c0030910.1021/acs.jced.4c00309","DOIUrl":null,"url":null,"abstract":"<p >Weak acid–salt solutions have become an alternative to antifreeze in frost-free air-source heat pumps (FFASHPs) owing to their low corrosiveness and cost. Although mixed weak acid–salts are effective for further reducing the freezing points and vapor pressures of the solutions, corresponding data are currently lacking, especially for temperatures ≤273 K. In this study, the vapor pressures of mixed potassium acetate (CH<sub>3</sub>COOK)–sodium formate (HCOONa)–water (H<sub>2</sub>O) and sodium acetate (CH<sub>3</sub>COONa)–potassium formate (HCOOK)–H<sub>2</sub>O were measured and correlated. Considering the circulation of antifreeze solutions in FFASHPs, 1:1 and 1:5 mass ratios of CH<sub>3</sub>COOK to HCOONa and CH<sub>3</sub>COONa to HCOOK were selected, respectively. The tested solute concentrations ranged from 0 to 50 wt %, and the tested temperatures ranged from 258 to 333 K. In total, 145 vapor pressure data points, ranging from 0.1121 to 12.9726 kPa, were obtained and fitted with modified Antoine equations. The average absolute deviations between the measured and calculated values were within 2.26%. The vapor pressures of the 44 wt % CH<sub>3</sub>COOK–HCOONa (CH<sub>3</sub>COOK:HCOONa = 1:1) and 42 wt % CH<sub>3</sub>COONa–HCOOK (CH<sub>3</sub>COONa:HCOOK = 1:5) solutions were approximate to those of the 30 wt % CaCl<sub>2</sub> solution below 278 K, and the mixed weak acid–salt solutions could be regenerated at lower temperature conditions.</p>","PeriodicalId":42,"journal":{"name":"Journal of Chemical & Engineering Data","volume":"69 11","pages":"3930–3942 3930–3942"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on the Equilibrium Vapor Pressures of Mixed Weak Acid–Salt Solutions for Frost-Free Air-Source Heat Pumps\",\"authors\":\"Hongshuo Qu, Libo Wang, Xiao Zhang, Xiaosong Zhang and Shifang Huang*, \",\"doi\":\"10.1021/acs.jced.4c0030910.1021/acs.jced.4c00309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Weak acid–salt solutions have become an alternative to antifreeze in frost-free air-source heat pumps (FFASHPs) owing to their low corrosiveness and cost. Although mixed weak acid–salts are effective for further reducing the freezing points and vapor pressures of the solutions, corresponding data are currently lacking, especially for temperatures ≤273 K. In this study, the vapor pressures of mixed potassium acetate (CH<sub>3</sub>COOK)–sodium formate (HCOONa)–water (H<sub>2</sub>O) and sodium acetate (CH<sub>3</sub>COONa)–potassium formate (HCOOK)–H<sub>2</sub>O were measured and correlated. Considering the circulation of antifreeze solutions in FFASHPs, 1:1 and 1:5 mass ratios of CH<sub>3</sub>COOK to HCOONa and CH<sub>3</sub>COONa to HCOOK were selected, respectively. The tested solute concentrations ranged from 0 to 50 wt %, and the tested temperatures ranged from 258 to 333 K. In total, 145 vapor pressure data points, ranging from 0.1121 to 12.9726 kPa, were obtained and fitted with modified Antoine equations. The average absolute deviations between the measured and calculated values were within 2.26%. The vapor pressures of the 44 wt % CH<sub>3</sub>COOK–HCOONa (CH<sub>3</sub>COOK:HCOONa = 1:1) and 42 wt % CH<sub>3</sub>COONa–HCOOK (CH<sub>3</sub>COONa:HCOOK = 1:5) solutions were approximate to those of the 30 wt % CaCl<sub>2</sub> solution below 278 K, and the mixed weak acid–salt solutions could be regenerated at lower temperature conditions.</p>\",\"PeriodicalId\":42,\"journal\":{\"name\":\"Journal of Chemical & Engineering Data\",\"volume\":\"69 11\",\"pages\":\"3930–3942 3930–3942\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical & Engineering Data\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jced.4c00309\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical & Engineering Data","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jced.4c00309","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental Study on the Equilibrium Vapor Pressures of Mixed Weak Acid–Salt Solutions for Frost-Free Air-Source Heat Pumps
Weak acid–salt solutions have become an alternative to antifreeze in frost-free air-source heat pumps (FFASHPs) owing to their low corrosiveness and cost. Although mixed weak acid–salts are effective for further reducing the freezing points and vapor pressures of the solutions, corresponding data are currently lacking, especially for temperatures ≤273 K. In this study, the vapor pressures of mixed potassium acetate (CH3COOK)–sodium formate (HCOONa)–water (H2O) and sodium acetate (CH3COONa)–potassium formate (HCOOK)–H2O were measured and correlated. Considering the circulation of antifreeze solutions in FFASHPs, 1:1 and 1:5 mass ratios of CH3COOK to HCOONa and CH3COONa to HCOOK were selected, respectively. The tested solute concentrations ranged from 0 to 50 wt %, and the tested temperatures ranged from 258 to 333 K. In total, 145 vapor pressure data points, ranging from 0.1121 to 12.9726 kPa, were obtained and fitted with modified Antoine equations. The average absolute deviations between the measured and calculated values were within 2.26%. The vapor pressures of the 44 wt % CH3COOK–HCOONa (CH3COOK:HCOONa = 1:1) and 42 wt % CH3COONa–HCOOK (CH3COONa:HCOOK = 1:5) solutions were approximate to those of the 30 wt % CaCl2 solution below 278 K, and the mixed weak acid–salt solutions could be regenerated at lower temperature conditions.
期刊介绍:
The Journal of Chemical & Engineering Data is a monthly journal devoted to the publication of data obtained from both experiment and computation, which are viewed as complementary. It is the only American Chemical Society journal primarily concerned with articles containing data on the phase behavior and the physical, thermodynamic, and transport properties of well-defined materials, including complex mixtures of known compositions. While environmental and biological samples are of interest, their compositions must be known and reproducible. As a result, adsorption on natural product materials does not generally fit within the scope of Journal of Chemical & Engineering Data.