{"title":"增强烯基苯的芳香性可降低其代谢活化和潜在的细胞毒性:从对肉豆蔻苷和榄香素的研究中汲取的教训","authors":"Guode Zhao, Zixia Hu, Jiannan Zheng, Jianyang Wu, Yuqin Chen, Ting Liu, Weiwei Li*, Ying Peng* and Jiang Zheng*, ","doi":"10.1021/acs.jmedchem.4c0161210.1021/acs.jmedchem.4c01612","DOIUrl":null,"url":null,"abstract":"<p >Metabolic activation studies of lead compounds are a crucial step in drug development and offer a key consideration during rational drug design. Myristicin (MRS) and elemicin (ELM), natural products belonging to alkenylbenzenes, share the backbone of 1-allyl-3-methoxybenzene. The backbone fuses with a methylenedioxy five-membered ring in MRS, while ELM is connected with two adjacent methoxy groups. ELM displayed powerful ability to induce cytotoxicity in cultured primary hepatocytes relative to MRS. Additionally, ELM exhibited superior efficiency in metabolic activation by CYP3A4, resulting in the formation of reactive metabolites carbonium ion, epoxides, and α,β-unsaturated ketone. Quantum chemical calculation and molecular dynamic studies revealed that the fused methylenedioxy 5-membered ring enhances the aromaticity of MRS, which affects the interaction between the allyl side chain and the heme for metabolic activation by the π–π stacking interaction with the aromatic amino acid residues of the host enzyme.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"67 21","pages":"19200–19215 19200–19215"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Aromaticity of Alkenylbenzenes May Decrease Their Metabolic Activation and Reduce Their Potential Cytotoxicity: Lessons Learnt from the Investigation of Myristicin and Elemicin\",\"authors\":\"Guode Zhao, Zixia Hu, Jiannan Zheng, Jianyang Wu, Yuqin Chen, Ting Liu, Weiwei Li*, Ying Peng* and Jiang Zheng*, \",\"doi\":\"10.1021/acs.jmedchem.4c0161210.1021/acs.jmedchem.4c01612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metabolic activation studies of lead compounds are a crucial step in drug development and offer a key consideration during rational drug design. Myristicin (MRS) and elemicin (ELM), natural products belonging to alkenylbenzenes, share the backbone of 1-allyl-3-methoxybenzene. The backbone fuses with a methylenedioxy five-membered ring in MRS, while ELM is connected with two adjacent methoxy groups. ELM displayed powerful ability to induce cytotoxicity in cultured primary hepatocytes relative to MRS. Additionally, ELM exhibited superior efficiency in metabolic activation by CYP3A4, resulting in the formation of reactive metabolites carbonium ion, epoxides, and α,β-unsaturated ketone. Quantum chemical calculation and molecular dynamic studies revealed that the fused methylenedioxy 5-membered ring enhances the aromaticity of MRS, which affects the interaction between the allyl side chain and the heme for metabolic activation by the π–π stacking interaction with the aromatic amino acid residues of the host enzyme.</p>\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"67 21\",\"pages\":\"19200–19215 19200–19215\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c01612\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c01612","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Enhancing Aromaticity of Alkenylbenzenes May Decrease Their Metabolic Activation and Reduce Their Potential Cytotoxicity: Lessons Learnt from the Investigation of Myristicin and Elemicin
Metabolic activation studies of lead compounds are a crucial step in drug development and offer a key consideration during rational drug design. Myristicin (MRS) and elemicin (ELM), natural products belonging to alkenylbenzenes, share the backbone of 1-allyl-3-methoxybenzene. The backbone fuses with a methylenedioxy five-membered ring in MRS, while ELM is connected with two adjacent methoxy groups. ELM displayed powerful ability to induce cytotoxicity in cultured primary hepatocytes relative to MRS. Additionally, ELM exhibited superior efficiency in metabolic activation by CYP3A4, resulting in the formation of reactive metabolites carbonium ion, epoxides, and α,β-unsaturated ketone. Quantum chemical calculation and molecular dynamic studies revealed that the fused methylenedioxy 5-membered ring enhances the aromaticity of MRS, which affects the interaction between the allyl side chain and the heme for metabolic activation by the π–π stacking interaction with the aromatic amino acid residues of the host enzyme.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.