Sylvain Charvet, Clément Jacob, Aurore Dietsch, Guillaume Tintori, Pierre-Georges Echeverria* and Julien C. Vantourout*,
{"title":"1,3-二烷基溴的电化学环丙烷化反应","authors":"Sylvain Charvet, Clément Jacob, Aurore Dietsch, Guillaume Tintori, Pierre-Georges Echeverria* and Julien C. Vantourout*, ","doi":"10.1021/acs.oprd.4c0030210.1021/acs.oprd.4c00302","DOIUrl":null,"url":null,"abstract":"<p >An electrochemical synthesis of mono- and 1,1-disubstituted cyclopropanes is demonstrated. Starting from readily available 1,3-dialkyl bromides, this method hinges on the integration of a sacrificial reductant alongside cost-effective cathode and anode materials. The refined approach eliminates the necessity for a divided cell and the use of hazardous or costly electrodes, thereby streamlining the transition of this protocol to a continuous flow system. In addition, an alternative protocol that utilizes a simple sacrificial anode is also described.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"28 11","pages":"4011–4017 4011–4017"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Cyclopropanation of 1,3-Dialkyl Bromides\",\"authors\":\"Sylvain Charvet, Clément Jacob, Aurore Dietsch, Guillaume Tintori, Pierre-Georges Echeverria* and Julien C. Vantourout*, \",\"doi\":\"10.1021/acs.oprd.4c0030210.1021/acs.oprd.4c00302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >An electrochemical synthesis of mono- and 1,1-disubstituted cyclopropanes is demonstrated. Starting from readily available 1,3-dialkyl bromides, this method hinges on the integration of a sacrificial reductant alongside cost-effective cathode and anode materials. The refined approach eliminates the necessity for a divided cell and the use of hazardous or costly electrodes, thereby streamlining the transition of this protocol to a continuous flow system. In addition, an alternative protocol that utilizes a simple sacrificial anode is also described.</p>\",\"PeriodicalId\":55,\"journal\":{\"name\":\"Organic Process Research & Development\",\"volume\":\"28 11\",\"pages\":\"4011–4017 4011–4017\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Process Research & Development\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.oprd.4c00302\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.4c00302","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Electrochemical Cyclopropanation of 1,3-Dialkyl Bromides
An electrochemical synthesis of mono- and 1,1-disubstituted cyclopropanes is demonstrated. Starting from readily available 1,3-dialkyl bromides, this method hinges on the integration of a sacrificial reductant alongside cost-effective cathode and anode materials. The refined approach eliminates the necessity for a divided cell and the use of hazardous or costly electrodes, thereby streamlining the transition of this protocol to a continuous flow system. In addition, an alternative protocol that utilizes a simple sacrificial anode is also described.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.