激发动力学的混合哈密顿模拟

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Lingyun Wan, Jie Liu*, Zhenyu Li and Jinlong Yang*, 
{"title":"激发动力学的混合哈密顿模拟","authors":"Lingyun Wan,&nbsp;Jie Liu*,&nbsp;Zhenyu Li and Jinlong Yang*,&nbsp;","doi":"10.1021/acs.jpclett.4c0262410.1021/acs.jpclett.4c02624","DOIUrl":null,"url":null,"abstract":"<p >Hamiltonian simulation is one of the most anticipated applications of quantum computing. Quantum circuit depth for implementing Hamiltonian simulation is commonly time dependent using Trotter-Suzuki product formulas so that long time quantum dynamic simulations (QDSs) become impratical for near-term quantum processors. Hamiltonian simulation based on Cartan decomposition (CD) provides an appealing scheme for QDSs with fixed-depth circuits, while it is limited to a time-independent Hamiltonian. In this work, we generalize this CD-based Hamiltonian simulation algorithm for studying time-dependent systems by combining it with variational quantum algorithms. The time-dependent and time-independent parts of the Hamiltonian are treated by using variational and CD-based Hamiltonian simulation algorithms, respectively. As such, this hybrid Hamiltonian simulation requires only fixed-depth quantum circuits to handle time-dependent cases while maintaining a high accuracy. We apply this new algorithm to study the response of spin and molecular systems to δ-kick electric fields and obtain accurate spectra for these excitation processes.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11234–11243 11234–11243"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Hamiltonian Simulation for Excitation Dynamics\",\"authors\":\"Lingyun Wan,&nbsp;Jie Liu*,&nbsp;Zhenyu Li and Jinlong Yang*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.4c0262410.1021/acs.jpclett.4c02624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hamiltonian simulation is one of the most anticipated applications of quantum computing. Quantum circuit depth for implementing Hamiltonian simulation is commonly time dependent using Trotter-Suzuki product formulas so that long time quantum dynamic simulations (QDSs) become impratical for near-term quantum processors. Hamiltonian simulation based on Cartan decomposition (CD) provides an appealing scheme for QDSs with fixed-depth circuits, while it is limited to a time-independent Hamiltonian. In this work, we generalize this CD-based Hamiltonian simulation algorithm for studying time-dependent systems by combining it with variational quantum algorithms. The time-dependent and time-independent parts of the Hamiltonian are treated by using variational and CD-based Hamiltonian simulation algorithms, respectively. As such, this hybrid Hamiltonian simulation requires only fixed-depth quantum circuits to handle time-dependent cases while maintaining a high accuracy. We apply this new algorithm to study the response of spin and molecular systems to δ-kick electric fields and obtain accurate spectra for these excitation processes.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"15 45\",\"pages\":\"11234–11243 11234–11243\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02624\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02624","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

哈密顿模拟是量子计算最令人期待的应用之一。使用 Trotter-Suzuki 乘积公式实现哈密顿模拟的量子电路深度通常与时间有关,因此对于近期量子处理器来说,长时间量子动态模拟(QDS)变得难以实现。基于卡坦分解(CD)的哈密顿模拟为具有固定深度电路的 QDS 提供了一种有吸引力的方案,但它仅限于与时间无关的哈密顿。在这项工作中,我们将这种基于卡坦分解的哈密顿模拟算法与变分量子算法相结合,使其适用于研究随时间变化的系统。哈密顿的时间依赖部分和时间不依赖部分分别使用变分法和基于 CD 的哈密顿模拟算法进行处理。因此,这种混合哈密顿模拟只需要固定深度的量子电路,就能在保持高精度的同时处理与时间相关的情况。我们应用这种新算法研究了自旋和分子系统对δ-踢电场的响应,并获得了这些激发过程的精确光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid Hamiltonian Simulation for Excitation Dynamics

Hybrid Hamiltonian Simulation for Excitation Dynamics

Hamiltonian simulation is one of the most anticipated applications of quantum computing. Quantum circuit depth for implementing Hamiltonian simulation is commonly time dependent using Trotter-Suzuki product formulas so that long time quantum dynamic simulations (QDSs) become impratical for near-term quantum processors. Hamiltonian simulation based on Cartan decomposition (CD) provides an appealing scheme for QDSs with fixed-depth circuits, while it is limited to a time-independent Hamiltonian. In this work, we generalize this CD-based Hamiltonian simulation algorithm for studying time-dependent systems by combining it with variational quantum algorithms. The time-dependent and time-independent parts of the Hamiltonian are treated by using variational and CD-based Hamiltonian simulation algorithms, respectively. As such, this hybrid Hamiltonian simulation requires only fixed-depth quantum circuits to handle time-dependent cases while maintaining a high accuracy. We apply this new algorithm to study the response of spin and molecular systems to δ-kick electric fields and obtain accurate spectra for these excitation processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信