高配体效率苯并噻唑类艾滋病毒噬菌体调制剂的 "伪基质包膜"/自由能扰动引导设计与机理研究

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL
Shujing Xu, Shuo Wang, Yang Zhou, Nicholas Foley, Lin Sun, Laura Walsham, Kai Tang, Dazhou Shi, Xiaoyu Shi, Zhijiao Zhang, Xiangyi Jiang, Shenghua Gao, Xinyong Liu, Christophe Pannecouque*, David C. Goldstone*, Alexej Dick* and Peng Zhan*, 
{"title":"高配体效率苯并噻唑类艾滋病毒噬菌体调制剂的 \"伪基质包膜\"/自由能扰动引导设计与机理研究","authors":"Shujing Xu,&nbsp;Shuo Wang,&nbsp;Yang Zhou,&nbsp;Nicholas Foley,&nbsp;Lin Sun,&nbsp;Laura Walsham,&nbsp;Kai Tang,&nbsp;Dazhou Shi,&nbsp;Xiaoyu Shi,&nbsp;Zhijiao Zhang,&nbsp;Xiangyi Jiang,&nbsp;Shenghua Gao,&nbsp;Xinyong Liu,&nbsp;Christophe Pannecouque*,&nbsp;David C. Goldstone*,&nbsp;Alexej Dick* and Peng Zhan*,&nbsp;","doi":"10.1021/acs.jmedchem.4c0154410.1021/acs.jmedchem.4c01544","DOIUrl":null,"url":null,"abstract":"<p >Based on our proposed “pseudosubstrate envelope” concept, 25 benzothiazole-bearing HIV capsid protein (CA) modulators were designed and synthesized under the guidance of free energy perturbation technology. The most potent compound, <b>IC-1k</b>, exhibited an EC<sub>50</sub> of 2.69 nM against HIV-1, being 393 times more potent than the positive control PF74. Notably, <b>IC-1k</b> emerged as the highest ligand efficiency (LE = 0.32) HIV CA modulator, surpassing that of the approved drug lenacapavir (LE = 0.21). Surface plasmon resonance assay and crystallographic analysis confirmed that <b>IC-1k</b> targeted HIV-1 CA within the chemical space of the “pseudosubstrate envelope”. Further mechanistic studies revealed a dual-stage inhibition profile: <b>IC-1k</b> disrupted early-stage capsid–host-factor interactions and promoted late-stage capsid misassembly. Preliminary pharmacokinetic evaluations demonstrated significantly improved metabolic stability in human liver microsomes for <b>IC-1k</b> (<i>T</i><sub>1/2</sub> = 91.3 min) compared to PF74 (<i>T</i><sub>1/2</sub> = 0.7 min), alongside a favorable safety profile. Overall, <b>IC-1k</b> presents a promising lead compound for further optimization.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"67 21","pages":"19057–19076 19057–19076"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Pseudosubstrate Envelope”/Free Energy Perturbation-Guided Design and Mechanistic Investigations of Benzothiazole HIV Capsid Modulators with High Ligand Efficiency\",\"authors\":\"Shujing Xu,&nbsp;Shuo Wang,&nbsp;Yang Zhou,&nbsp;Nicholas Foley,&nbsp;Lin Sun,&nbsp;Laura Walsham,&nbsp;Kai Tang,&nbsp;Dazhou Shi,&nbsp;Xiaoyu Shi,&nbsp;Zhijiao Zhang,&nbsp;Xiangyi Jiang,&nbsp;Shenghua Gao,&nbsp;Xinyong Liu,&nbsp;Christophe Pannecouque*,&nbsp;David C. Goldstone*,&nbsp;Alexej Dick* and Peng Zhan*,&nbsp;\",\"doi\":\"10.1021/acs.jmedchem.4c0154410.1021/acs.jmedchem.4c01544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Based on our proposed “pseudosubstrate envelope” concept, 25 benzothiazole-bearing HIV capsid protein (CA) modulators were designed and synthesized under the guidance of free energy perturbation technology. The most potent compound, <b>IC-1k</b>, exhibited an EC<sub>50</sub> of 2.69 nM against HIV-1, being 393 times more potent than the positive control PF74. Notably, <b>IC-1k</b> emerged as the highest ligand efficiency (LE = 0.32) HIV CA modulator, surpassing that of the approved drug lenacapavir (LE = 0.21). Surface plasmon resonance assay and crystallographic analysis confirmed that <b>IC-1k</b> targeted HIV-1 CA within the chemical space of the “pseudosubstrate envelope”. Further mechanistic studies revealed a dual-stage inhibition profile: <b>IC-1k</b> disrupted early-stage capsid–host-factor interactions and promoted late-stage capsid misassembly. Preliminary pharmacokinetic evaluations demonstrated significantly improved metabolic stability in human liver microsomes for <b>IC-1k</b> (<i>T</i><sub>1/2</sub> = 91.3 min) compared to PF74 (<i>T</i><sub>1/2</sub> = 0.7 min), alongside a favorable safety profile. Overall, <b>IC-1k</b> presents a promising lead compound for further optimization.</p>\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"67 21\",\"pages\":\"19057–19076 19057–19076\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c01544\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c01544","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

根据我们提出的 "伪底物包膜 "概念,在自由能扰动技术的指导下,设计并合成了 25 种含苯并噻唑的 HIV 荚膜蛋白(CA)调节剂。最有效的化合物 IC-1k 对 HIV-1 的 EC50 值为 2.69 nM,是阳性对照 PF74 的 393 倍。值得注意的是,IC-1k 是配体效率(LE = 0.32)最高的 HIV CA 调节剂,超过了已批准药物来那卡韦(LE = 0.21)。表面等离子共振分析和晶体学分析证实,IC-1k 在 "伪基质包膜 "的化学空间内靶向 HIV-1 CA。进一步的机理研究揭示了双阶段抑制特征:IC-1k 破坏了早期阶段的噬菌体-宿主-因子相互作用,并促进了晚期阶段的噬菌体错构。初步药代动力学评估表明,与 PF74(T1/2 = 0.7 分钟)相比,IC-1k(T1/2 = 91.3 分钟)在人体肝脏微粒体中的代谢稳定性显著提高,同时具有良好的安全性。总之,IC-1k 是一种很有希望进一步优化的先导化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

“Pseudosubstrate Envelope”/Free Energy Perturbation-Guided Design and Mechanistic Investigations of Benzothiazole HIV Capsid Modulators with High Ligand Efficiency

“Pseudosubstrate Envelope”/Free Energy Perturbation-Guided Design and Mechanistic Investigations of Benzothiazole HIV Capsid Modulators with High Ligand Efficiency

Based on our proposed “pseudosubstrate envelope” concept, 25 benzothiazole-bearing HIV capsid protein (CA) modulators were designed and synthesized under the guidance of free energy perturbation technology. The most potent compound, IC-1k, exhibited an EC50 of 2.69 nM against HIV-1, being 393 times more potent than the positive control PF74. Notably, IC-1k emerged as the highest ligand efficiency (LE = 0.32) HIV CA modulator, surpassing that of the approved drug lenacapavir (LE = 0.21). Surface plasmon resonance assay and crystallographic analysis confirmed that IC-1k targeted HIV-1 CA within the chemical space of the “pseudosubstrate envelope”. Further mechanistic studies revealed a dual-stage inhibition profile: IC-1k disrupted early-stage capsid–host-factor interactions and promoted late-stage capsid misassembly. Preliminary pharmacokinetic evaluations demonstrated significantly improved metabolic stability in human liver microsomes for IC-1k (T1/2 = 91.3 min) compared to PF74 (T1/2 = 0.7 min), alongside a favorable safety profile. Overall, IC-1k presents a promising lead compound for further optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信