{"title":"TFEB 将 cGAS-STING 通路与溶酶体生物生成联系起来。","authors":"Yaping Meng, Xinran Li, Haoxing Xu","doi":"10.1016/j.tcb.2024.10.011","DOIUrl":null,"url":null,"abstract":"<p><p>The cGAS-STING pathway senses the level of double-stranded (ds)DNA in the cytosol, and is required for innate immunity through its effector, TBK1. A recent study by Lv et al. reports that STING activation also simultaneously promotes lysosomal biogenesis by inducing nuclear translocation of the transcription factors TFEB/TFE3 independent of TBK1.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TFEB links the cGAS-STING pathway to lysosome biogenesis.\",\"authors\":\"Yaping Meng, Xinran Li, Haoxing Xu\",\"doi\":\"10.1016/j.tcb.2024.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cGAS-STING pathway senses the level of double-stranded (ds)DNA in the cytosol, and is required for innate immunity through its effector, TBK1. A recent study by Lv et al. reports that STING activation also simultaneously promotes lysosomal biogenesis by inducing nuclear translocation of the transcription factors TFEB/TFE3 independent of TBK1.</p>\",\"PeriodicalId\":56085,\"journal\":{\"name\":\"Trends in Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tcb.2024.10.011\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tcb.2024.10.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
TFEB links the cGAS-STING pathway to lysosome biogenesis.
The cGAS-STING pathway senses the level of double-stranded (ds)DNA in the cytosol, and is required for innate immunity through its effector, TBK1. A recent study by Lv et al. reports that STING activation also simultaneously promotes lysosomal biogenesis by inducing nuclear translocation of the transcription factors TFEB/TFE3 independent of TBK1.
期刊介绍:
Trends in Cell Biology stands as a prominent review journal in molecular and cell biology. Monthly review articles track the current breadth and depth of research in cell biology, reporting on emerging developments and integrating various methods, disciplines, and principles. Beyond Reviews, the journal features Opinion articles that follow trends, offer innovative ideas, and provide insights into the implications of new developments, suggesting future directions. All articles are commissioned from leading scientists and undergo rigorous peer-review to ensure balance and accuracy.