UMS2-ODNet:统一尺度域适应机制驱动的多尺度注意力物体检测网络。

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yuze Li , Yan Zhang , Chunling Yang , Yu Chen
{"title":"UMS2-ODNet:统一尺度域适应机制驱动的多尺度注意力物体检测网络。","authors":"Yuze Li ,&nbsp;Yan Zhang ,&nbsp;Chunling Yang ,&nbsp;Yu Chen","doi":"10.1016/j.neunet.2024.106890","DOIUrl":null,"url":null,"abstract":"<div><div>Unsupervised domain adaptation techniques improve the generalization capability and performance of detectors, especially when the source and target domains have different distributions. Compared with two-stage detectors, one-stage detectors (especially YOLO series) provide better real-time capabilities and become primary choices in industrial fields. In this paper, to improve cross-domain object detection performance, we propose a Unified-Scale Domain Adaptation Mechanism Driven Object Detection Network with Multi-Scale Attention (UMS<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>-ODNet). UMS<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>-ODNet chooses YOLOv6 as the basic framework in terms of its balance between efficiency and accuracy. UMS<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>-ODNet considers the adaptation consistency across different scale feature maps, which tends to be ignored by existing methods. A unified-scale domain adaptation mechanism is designed to fully utilize and unify the discriminative information from different scales. A multi-scale attention module is constructed to further improve the multi-scale representation ability of features. A novel loss function is created to maintain the consistency of multi-scale information by considering the homology of the descriptions from the same latent feature. Multiply experiments are conducted on four widely used datasets. Our proposed method outperforms other state-of-the-art techniques, illustrating the feasibility and effectiveness of the proposed UMS<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>-ODNet.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106890"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UMS2-ODNet: Unified-scale domain adaptation mechanism driven object detection network with multi-scale attention\",\"authors\":\"Yuze Li ,&nbsp;Yan Zhang ,&nbsp;Chunling Yang ,&nbsp;Yu Chen\",\"doi\":\"10.1016/j.neunet.2024.106890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unsupervised domain adaptation techniques improve the generalization capability and performance of detectors, especially when the source and target domains have different distributions. Compared with two-stage detectors, one-stage detectors (especially YOLO series) provide better real-time capabilities and become primary choices in industrial fields. In this paper, to improve cross-domain object detection performance, we propose a Unified-Scale Domain Adaptation Mechanism Driven Object Detection Network with Multi-Scale Attention (UMS<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>-ODNet). UMS<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>-ODNet chooses YOLOv6 as the basic framework in terms of its balance between efficiency and accuracy. UMS<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>-ODNet considers the adaptation consistency across different scale feature maps, which tends to be ignored by existing methods. A unified-scale domain adaptation mechanism is designed to fully utilize and unify the discriminative information from different scales. A multi-scale attention module is constructed to further improve the multi-scale representation ability of features. A novel loss function is created to maintain the consistency of multi-scale information by considering the homology of the descriptions from the same latent feature. Multiply experiments are conducted on four widely used datasets. Our proposed method outperforms other state-of-the-art techniques, illustrating the feasibility and effectiveness of the proposed UMS<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>-ODNet.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"181 \",\"pages\":\"Article 106890\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024008190\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024008190","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

无监督域适应技术提高了探测器的泛化能力和性能,尤其是当源域和目标域具有不同分布时。与两级探测器相比,一级探测器(尤其是 YOLO 系列)具有更好的实时性,成为工业领域的主要选择。为了提高跨域物体检测性能,本文提出了一种具有多尺度注意力的统一尺度域自适应机制驱动的物体检测网络(UMS2-ODNet)。UMS2-ODNet 选择 YOLOv6 作为基本框架,以兼顾效率和准确性。UMS2-ODNet 考虑了不同尺度特征图之间的适应一致性,而现有方法往往忽略了这一点。设计了一种统一尺度域适应机制,以充分利用和统一不同尺度的判别信息。构建了一个多尺度关注模块,以进一步提高特征的多尺度表示能力。通过考虑同一潜在特征描述的同源性,创建了一种新的损失函数来保持多尺度信息的一致性。我们在四个广泛使用的数据集上进行了多重实验。我们提出的方法优于其他最先进的技术,说明了所提出的 UMS2-ODNet 的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UMS2-ODNet: Unified-scale domain adaptation mechanism driven object detection network with multi-scale attention
Unsupervised domain adaptation techniques improve the generalization capability and performance of detectors, especially when the source and target domains have different distributions. Compared with two-stage detectors, one-stage detectors (especially YOLO series) provide better real-time capabilities and become primary choices in industrial fields. In this paper, to improve cross-domain object detection performance, we propose a Unified-Scale Domain Adaptation Mechanism Driven Object Detection Network with Multi-Scale Attention (UMS2-ODNet). UMS2-ODNet chooses YOLOv6 as the basic framework in terms of its balance between efficiency and accuracy. UMS2-ODNet considers the adaptation consistency across different scale feature maps, which tends to be ignored by existing methods. A unified-scale domain adaptation mechanism is designed to fully utilize and unify the discriminative information from different scales. A multi-scale attention module is constructed to further improve the multi-scale representation ability of features. A novel loss function is created to maintain the consistency of multi-scale information by considering the homology of the descriptions from the same latent feature. Multiply experiments are conducted on four widely used datasets. Our proposed method outperforms other state-of-the-art techniques, illustrating the feasibility and effectiveness of the proposed UMS2-ODNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信