{"title":"基于深度学习的光子飞行时间分布检索时间解卷积。","authors":"Vikas Pandey, Ismail Erbas, Xavier Michalet, Arin Ulku, Claudio Bruschini, Edoardo Charbon, Margarida Barroso, Xavier Intes","doi":"10.1364/OL.533923","DOIUrl":null,"url":null,"abstract":"<p><p>The acquisition of the time of flight (ToF) of photons has found numerous applications in the biomedical field. Over the last decades, a few strategies have been proposed to deconvolve the temporal instrument response function (IRF) that distorts the experimental time-resolved data. However, these methods require burdensome computational strategies and regularization terms to mitigate noise contributions. Herein, we propose a deep learning model specifically to perform the deconvolution task in fluorescence lifetime imaging (FLI). The model is trained and validated with representative simulated FLI data with the goal of retrieving the true photon ToF distribution. Its performance and robustness are validated with well-controlled in vitro experiments using three time-resolved imaging modalities with markedly different temporal IRFs. The model aptitude is further established with in vivo preclinical investigation. Overall, these in vitro and in vivo validations demonstrate the flexibility and accuracy of deep learning model-based deconvolution in time-resolved FLI and diffuse optical imaging.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 22","pages":"6457-6460"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based temporal deconvolution for photon time-of-flight distribution retrieval.\",\"authors\":\"Vikas Pandey, Ismail Erbas, Xavier Michalet, Arin Ulku, Claudio Bruschini, Edoardo Charbon, Margarida Barroso, Xavier Intes\",\"doi\":\"10.1364/OL.533923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The acquisition of the time of flight (ToF) of photons has found numerous applications in the biomedical field. Over the last decades, a few strategies have been proposed to deconvolve the temporal instrument response function (IRF) that distorts the experimental time-resolved data. However, these methods require burdensome computational strategies and regularization terms to mitigate noise contributions. Herein, we propose a deep learning model specifically to perform the deconvolution task in fluorescence lifetime imaging (FLI). The model is trained and validated with representative simulated FLI data with the goal of retrieving the true photon ToF distribution. Its performance and robustness are validated with well-controlled in vitro experiments using three time-resolved imaging modalities with markedly different temporal IRFs. The model aptitude is further established with in vivo preclinical investigation. Overall, these in vitro and in vivo validations demonstrate the flexibility and accuracy of deep learning model-based deconvolution in time-resolved FLI and diffuse optical imaging.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"49 22\",\"pages\":\"6457-6460\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.533923\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.533923","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Deep learning-based temporal deconvolution for photon time-of-flight distribution retrieval.
The acquisition of the time of flight (ToF) of photons has found numerous applications in the biomedical field. Over the last decades, a few strategies have been proposed to deconvolve the temporal instrument response function (IRF) that distorts the experimental time-resolved data. However, these methods require burdensome computational strategies and regularization terms to mitigate noise contributions. Herein, we propose a deep learning model specifically to perform the deconvolution task in fluorescence lifetime imaging (FLI). The model is trained and validated with representative simulated FLI data with the goal of retrieving the true photon ToF distribution. Its performance and robustness are validated with well-controlled in vitro experiments using three time-resolved imaging modalities with markedly different temporal IRFs. The model aptitude is further established with in vivo preclinical investigation. Overall, these in vitro and in vivo validations demonstrate the flexibility and accuracy of deep learning model-based deconvolution in time-resolved FLI and diffuse optical imaging.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.