{"title":"生化信号诱导超分子水凝胶化,形成结构化的独立软材料。","authors":"Dineshkumar Bharathidasan, Akshay Sunil Salvi, Suryasarathi Bose, Chandan Maity","doi":"10.1002/mabi.202400419","DOIUrl":null,"url":null,"abstract":"<p><p>Cells coordinate their activity and regulate biological processes in response to chemical signals. Mimicking natural processes, control over the formation of artificial supramolecular materials is of high interest for their application in biology and medicine. Supramolecular material that can form in response to chemical signals is important for the development of autonomously responsive materials. Herein, a supramolecular hydrogel system is reported enabling in situ generation of hydrogelators in response to a specific chemical signal. Using self-immolative chemistry, spatial control over the formation of supramolecular hydrogel material and structured free-standing hydrogel objects via providing H<sub>2</sub>O<sub>2</sub> locally is demonstrated. In addition, a hybrid system is developed enabling in situ generation of the H<sub>2</sub>O<sub>2</sub> by the action of an enzyme and glucose, providing an extra handle for the development of an intelligent soft material. This generic design should enable the use of various (chemical)stimuli that can be obtained via coupling different stimuli and various chemical and/or biological markers and appears a versatile approach for the design of smart artificial soft materials that can find application in theranostic purposes.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400419"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochemical Signal-Induced Supramolecular Hydrogelation for Structured Free-Standing Soft Material Formation.\",\"authors\":\"Dineshkumar Bharathidasan, Akshay Sunil Salvi, Suryasarathi Bose, Chandan Maity\",\"doi\":\"10.1002/mabi.202400419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cells coordinate their activity and regulate biological processes in response to chemical signals. Mimicking natural processes, control over the formation of artificial supramolecular materials is of high interest for their application in biology and medicine. Supramolecular material that can form in response to chemical signals is important for the development of autonomously responsive materials. Herein, a supramolecular hydrogel system is reported enabling in situ generation of hydrogelators in response to a specific chemical signal. Using self-immolative chemistry, spatial control over the formation of supramolecular hydrogel material and structured free-standing hydrogel objects via providing H<sub>2</sub>O<sub>2</sub> locally is demonstrated. In addition, a hybrid system is developed enabling in situ generation of the H<sub>2</sub>O<sub>2</sub> by the action of an enzyme and glucose, providing an extra handle for the development of an intelligent soft material. This generic design should enable the use of various (chemical)stimuli that can be obtained via coupling different stimuli and various chemical and/or biological markers and appears a versatile approach for the design of smart artificial soft materials that can find application in theranostic purposes.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\" \",\"pages\":\"e2400419\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mabi.202400419\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400419","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Biochemical Signal-Induced Supramolecular Hydrogelation for Structured Free-Standing Soft Material Formation.
Cells coordinate their activity and regulate biological processes in response to chemical signals. Mimicking natural processes, control over the formation of artificial supramolecular materials is of high interest for their application in biology and medicine. Supramolecular material that can form in response to chemical signals is important for the development of autonomously responsive materials. Herein, a supramolecular hydrogel system is reported enabling in situ generation of hydrogelators in response to a specific chemical signal. Using self-immolative chemistry, spatial control over the formation of supramolecular hydrogel material and structured free-standing hydrogel objects via providing H2O2 locally is demonstrated. In addition, a hybrid system is developed enabling in situ generation of the H2O2 by the action of an enzyme and glucose, providing an extra handle for the development of an intelligent soft material. This generic design should enable the use of various (chemical)stimuli that can be obtained via coupling different stimuli and various chemical and/or biological markers and appears a versatile approach for the design of smart artificial soft materials that can find application in theranostic purposes.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.