Ashley Baldwin, Tamara Lechon, Angela Marchbank, Simon Scofield, Kerstin Lieu, Charlotte L Wilson, Richard A Ludlow, Robert J Herbert, Hans-Wilhelm Nützmann, Hilary J Rogers
{"title":"H3K27me3 组蛋白标记与草莓果实采后色泽和香气发育的抑制相关。","authors":"Ashley Baldwin, Tamara Lechon, Angela Marchbank, Simon Scofield, Kerstin Lieu, Charlotte L Wilson, Richard A Ludlow, Robert J Herbert, Hans-Wilhelm Nützmann, Hilary J Rogers","doi":"10.1093/jxb/erae464","DOIUrl":null,"url":null,"abstract":"<p><p>Strawberry ripening is non-climacteric, and post-harvest fruit enter senescence and deteriorate rapidly. Chilled storage induces transcriptome wide changes in gene expression, including the down-regulation of aroma related genes. Histone marks are associated with transcriptional activation or repression; the H3K27me3 mark is mainly associated with repression of gene expression. Here genes associated with H3K27me3 were identified through ChIP-seq in ripe red strawberry fruit at harvest and after 5 days of chilled storage in the dark. The number of ChIP peaks increased with storage time, indicating an increased role for this mark in regulation of gene expression following chilled dark storage. Comparing ChIP-seq data to RNA-seq data from the same material identified 440 genes whose expression correlates with H3K27me3 repression. Abiotic stress genes, especially cold stress response genes, were down-regulated during storage. Increased association with the H3K27me3 mark indicates that they may be repressed via this epigenetic mark. Other functional groups included cell wall and carbohydrate metabolism. The association with the H3K27me3 mark of two transcription factors (FaHY5 and FaTRAB1) and FaADH, involved in ester biosynthesis, was validated by ChIP-PCR. These three genes are all down-regulated during storage and indicate a network of H3K27me3 gene repression affecting both anthocyanin and ester biosynthesis.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The H3K27me3 histone mark correlates with repression of colour and aroma development post-harvest in strawberry fruit.\",\"authors\":\"Ashley Baldwin, Tamara Lechon, Angela Marchbank, Simon Scofield, Kerstin Lieu, Charlotte L Wilson, Richard A Ludlow, Robert J Herbert, Hans-Wilhelm Nützmann, Hilary J Rogers\",\"doi\":\"10.1093/jxb/erae464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Strawberry ripening is non-climacteric, and post-harvest fruit enter senescence and deteriorate rapidly. Chilled storage induces transcriptome wide changes in gene expression, including the down-regulation of aroma related genes. Histone marks are associated with transcriptional activation or repression; the H3K27me3 mark is mainly associated with repression of gene expression. Here genes associated with H3K27me3 were identified through ChIP-seq in ripe red strawberry fruit at harvest and after 5 days of chilled storage in the dark. The number of ChIP peaks increased with storage time, indicating an increased role for this mark in regulation of gene expression following chilled dark storage. Comparing ChIP-seq data to RNA-seq data from the same material identified 440 genes whose expression correlates with H3K27me3 repression. Abiotic stress genes, especially cold stress response genes, were down-regulated during storage. Increased association with the H3K27me3 mark indicates that they may be repressed via this epigenetic mark. Other functional groups included cell wall and carbohydrate metabolism. The association with the H3K27me3 mark of two transcription factors (FaHY5 and FaTRAB1) and FaADH, involved in ester biosynthesis, was validated by ChIP-PCR. These three genes are all down-regulated during storage and indicate a network of H3K27me3 gene repression affecting both anthocyanin and ester biosynthesis.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae464\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae464","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The H3K27me3 histone mark correlates with repression of colour and aroma development post-harvest in strawberry fruit.
Strawberry ripening is non-climacteric, and post-harvest fruit enter senescence and deteriorate rapidly. Chilled storage induces transcriptome wide changes in gene expression, including the down-regulation of aroma related genes. Histone marks are associated with transcriptional activation or repression; the H3K27me3 mark is mainly associated with repression of gene expression. Here genes associated with H3K27me3 were identified through ChIP-seq in ripe red strawberry fruit at harvest and after 5 days of chilled storage in the dark. The number of ChIP peaks increased with storage time, indicating an increased role for this mark in regulation of gene expression following chilled dark storage. Comparing ChIP-seq data to RNA-seq data from the same material identified 440 genes whose expression correlates with H3K27me3 repression. Abiotic stress genes, especially cold stress response genes, were down-regulated during storage. Increased association with the H3K27me3 mark indicates that they may be repressed via this epigenetic mark. Other functional groups included cell wall and carbohydrate metabolism. The association with the H3K27me3 mark of two transcription factors (FaHY5 and FaTRAB1) and FaADH, involved in ester biosynthesis, was validated by ChIP-PCR. These three genes are all down-regulated during storage and indicate a network of H3K27me3 gene repression affecting both anthocyanin and ester biosynthesis.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.