{"title":"人工智能作为小儿中耳炎诊断的辅助工具。","authors":"Zhengjun Zhong , Xu Guo , Desheng Jia , Hongying Zheng , Zebin Wu , Xuansheng Wang","doi":"10.1016/j.ijporl.2024.112154","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>In order to promote the use of AI technology as the auxiliary tool in pediatric otitis media diagnosis, we use the convolutional neural networks and deep learning for image classification and disease diagnosis. We also designed a Pediatric Otitis Media Classifier to analyze and classify the images for physicians.</div></div><div><h3>Methods</h3><div>A pediatric otitis media classifier was designed for junior physicians (doctors who have been engaged in clinical practice for a short time) as an auxiliary diagnostic tool. To design this classifier for children with otitis media, we used a large number of images of acute otitis media (AOM), secretory otitis media (OME), and normal otoscope images to obtain the optimal convolutional neural network model.</div></div><div><h3>Results</h3><div>The average recognition accuracies of the ZFNet and the TSL16 for classification were 97.87 % and 97.62 %, far exceeding the accuracy of human diagnosis. The results of using the Pediatric Otitis Media Classifier show that we can use the classifier to correctly identify the image types of child middle ear infections.</div></div><div><h3>Conclusions</h3><div>We developed the Pediatric Otitis Media Classifier for the successful automated classification of AOM and OME in children using otoscopic images. In contrast to the traditional diagnosis of pediatric otitis media, which relies heavily on the experience of doctors, the diagnostic accuracy of even experienced physicians is only approximately 80 %. With AI technology, we can improve the accuracy rate to over 98 %, which can effectively assist doctors in auxiliary diagnosis. It also reduces delayed treatment, antibiotic misuse, and unnecessary surgery caused by misdiagnosis.</div></div>","PeriodicalId":14388,"journal":{"name":"International journal of pediatric otorhinolaryngology","volume":"187 ","pages":"Article 112154"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence as an auxiliary tool in pediatric otitis media diagnosis\",\"authors\":\"Zhengjun Zhong , Xu Guo , Desheng Jia , Hongying Zheng , Zebin Wu , Xuansheng Wang\",\"doi\":\"10.1016/j.ijporl.2024.112154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>In order to promote the use of AI technology as the auxiliary tool in pediatric otitis media diagnosis, we use the convolutional neural networks and deep learning for image classification and disease diagnosis. We also designed a Pediatric Otitis Media Classifier to analyze and classify the images for physicians.</div></div><div><h3>Methods</h3><div>A pediatric otitis media classifier was designed for junior physicians (doctors who have been engaged in clinical practice for a short time) as an auxiliary diagnostic tool. To design this classifier for children with otitis media, we used a large number of images of acute otitis media (AOM), secretory otitis media (OME), and normal otoscope images to obtain the optimal convolutional neural network model.</div></div><div><h3>Results</h3><div>The average recognition accuracies of the ZFNet and the TSL16 for classification were 97.87 % and 97.62 %, far exceeding the accuracy of human diagnosis. The results of using the Pediatric Otitis Media Classifier show that we can use the classifier to correctly identify the image types of child middle ear infections.</div></div><div><h3>Conclusions</h3><div>We developed the Pediatric Otitis Media Classifier for the successful automated classification of AOM and OME in children using otoscopic images. In contrast to the traditional diagnosis of pediatric otitis media, which relies heavily on the experience of doctors, the diagnostic accuracy of even experienced physicians is only approximately 80 %. With AI technology, we can improve the accuracy rate to over 98 %, which can effectively assist doctors in auxiliary diagnosis. It also reduces delayed treatment, antibiotic misuse, and unnecessary surgery caused by misdiagnosis.</div></div>\",\"PeriodicalId\":14388,\"journal\":{\"name\":\"International journal of pediatric otorhinolaryngology\",\"volume\":\"187 \",\"pages\":\"Article 112154\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pediatric otorhinolaryngology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165587624003082\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OTORHINOLARYNGOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pediatric otorhinolaryngology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165587624003082","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
Artificial intelligence as an auxiliary tool in pediatric otitis media diagnosis
Objectives
In order to promote the use of AI technology as the auxiliary tool in pediatric otitis media diagnosis, we use the convolutional neural networks and deep learning for image classification and disease diagnosis. We also designed a Pediatric Otitis Media Classifier to analyze and classify the images for physicians.
Methods
A pediatric otitis media classifier was designed for junior physicians (doctors who have been engaged in clinical practice for a short time) as an auxiliary diagnostic tool. To design this classifier for children with otitis media, we used a large number of images of acute otitis media (AOM), secretory otitis media (OME), and normal otoscope images to obtain the optimal convolutional neural network model.
Results
The average recognition accuracies of the ZFNet and the TSL16 for classification were 97.87 % and 97.62 %, far exceeding the accuracy of human diagnosis. The results of using the Pediatric Otitis Media Classifier show that we can use the classifier to correctly identify the image types of child middle ear infections.
Conclusions
We developed the Pediatric Otitis Media Classifier for the successful automated classification of AOM and OME in children using otoscopic images. In contrast to the traditional diagnosis of pediatric otitis media, which relies heavily on the experience of doctors, the diagnostic accuracy of even experienced physicians is only approximately 80 %. With AI technology, we can improve the accuracy rate to over 98 %, which can effectively assist doctors in auxiliary diagnosis. It also reduces delayed treatment, antibiotic misuse, and unnecessary surgery caused by misdiagnosis.
期刊介绍:
The purpose of the International Journal of Pediatric Otorhinolaryngology is to concentrate and disseminate information concerning prevention, cure and care of otorhinolaryngological disorders in infants and children due to developmental, degenerative, infectious, neoplastic, traumatic, social, psychiatric and economic causes. The Journal provides a medium for clinical and basic contributions in all of the areas of pediatric otorhinolaryngology. This includes medical and surgical otology, bronchoesophagology, laryngology, rhinology, diseases of the head and neck, and disorders of communication, including voice, speech and language disorders.