{"title":"RAEPI:RAEPI:基于受限注意力机制预测促进剂与增强剂之间的相互作用","authors":"Wanjing Zhang, Mingyang Zhang, Min Zhu","doi":"10.1007/s12539-024-00669-0","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancer-promoter interactions (EPIs) are crucial in gene transcription regulation and cell differentiation. Traditional biological experiments are costly and time-consuming, motivating the development of computational prediction methods. However, existing EPI prediction methods inadequately capture the intricate direct interactions between enhancer and promoter sequences, which limits their prediction performance to some extent. In this work, we propose an innovative attention-based approach RAEPI, which uses convolutional neural networks to extract initial features of enhancers and promoters, combined with a specially designed Restricted Attention mechanism with Query-Key-Value constrained to simulate the interactions between them for further feature extraction. To improve cross-cell line prediction, we employ a transfer learning strategy for pre-training. Furthermore, we extracted sequence motifs to evaluate the RAEPI's effectiveness from a visualization perspective. Experimental results show that RAEPI achieves competitive prediction performance to existing methods on the benchmark dataset.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RAEPI: Predicting Enhancer-Promoter Interactions Based on Restricted Attention Mechanism.\",\"authors\":\"Wanjing Zhang, Mingyang Zhang, Min Zhu\",\"doi\":\"10.1007/s12539-024-00669-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enhancer-promoter interactions (EPIs) are crucial in gene transcription regulation and cell differentiation. Traditional biological experiments are costly and time-consuming, motivating the development of computational prediction methods. However, existing EPI prediction methods inadequately capture the intricate direct interactions between enhancer and promoter sequences, which limits their prediction performance to some extent. In this work, we propose an innovative attention-based approach RAEPI, which uses convolutional neural networks to extract initial features of enhancers and promoters, combined with a specially designed Restricted Attention mechanism with Query-Key-Value constrained to simulate the interactions between them for further feature extraction. To improve cross-cell line prediction, we employ a transfer learning strategy for pre-training. Furthermore, we extracted sequence motifs to evaluate the RAEPI's effectiveness from a visualization perspective. Experimental results show that RAEPI achieves competitive prediction performance to existing methods on the benchmark dataset.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00669-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00669-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
RAEPI: Predicting Enhancer-Promoter Interactions Based on Restricted Attention Mechanism.
Enhancer-promoter interactions (EPIs) are crucial in gene transcription regulation and cell differentiation. Traditional biological experiments are costly and time-consuming, motivating the development of computational prediction methods. However, existing EPI prediction methods inadequately capture the intricate direct interactions between enhancer and promoter sequences, which limits their prediction performance to some extent. In this work, we propose an innovative attention-based approach RAEPI, which uses convolutional neural networks to extract initial features of enhancers and promoters, combined with a specially designed Restricted Attention mechanism with Query-Key-Value constrained to simulate the interactions between them for further feature extraction. To improve cross-cell line prediction, we employ a transfer learning strategy for pre-training. Furthermore, we extracted sequence motifs to evaluate the RAEPI's effectiveness from a visualization perspective. Experimental results show that RAEPI achieves competitive prediction performance to existing methods on the benchmark dataset.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.