Yan Yu, Zaijun Yang, Yichao Wu, Yuanyuan Jiang, Jinqiu Liao, Ruiwu Yang, Li Zhang
{"title":"丹参中三种丹参酮成分的定量性状基因座图谱和候选基因分析","authors":"Yan Yu, Zaijun Yang, Yichao Wu, Yuanyuan Jiang, Jinqiu Liao, Ruiwu Yang, Li Zhang","doi":"10.1007/s10528-024-10964-6","DOIUrl":null,"url":null,"abstract":"<p><p>Tanshinones are abietane diterpenoid quinone compounds with diverse biological activities and pharmacological effects found in Salvia miltiorrhiza. Leveraging the high-density genetic map established through our prior research endeavors, we conducted a quantitative trait locus (QTL) analysis pertaining to the concentrations of three major tanshinone components, cryptotanshinone, tanshinone I, and tanshinone IIA, in S. miltiorrhiza. This extensive investigation was conducted across three distinct planting environments, ultimately identifying a comprehensive repertoire of 27 discernible QTLs. These QTLs were mapped onto four distinct linkage groups (LG), namely LG1, LG5, LG6, and LG7, which explained 3.11%-37.85% phenotypic variation. Candidate genes were projected based on consistent QTLs detected for each active ingredient in three environments. Nineteen putative candidate genes involved in the regulation of tanshinone biosynthesis were identified. These genes participate in primary metabolic and multiple branching terpenoid biosynthesis pathways, forming a complex regulatory network. Our findings have the potential to offer novel insights into advancing the understanding of the regulatory mechanisms governing tanshinone biosynthesis. Furthermore, these results establish crucial groundwork for gene discovery, marker-assisted selection breeding, and map-based cloning of functional genes associated with tanshinone content in S. miltiorrhiza.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Trait Locus Mapping and Candidate Gene Analysis of the Contents of Three Tanshinone Components in Salvia miltiorrhiza Bunge.\",\"authors\":\"Yan Yu, Zaijun Yang, Yichao Wu, Yuanyuan Jiang, Jinqiu Liao, Ruiwu Yang, Li Zhang\",\"doi\":\"10.1007/s10528-024-10964-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tanshinones are abietane diterpenoid quinone compounds with diverse biological activities and pharmacological effects found in Salvia miltiorrhiza. Leveraging the high-density genetic map established through our prior research endeavors, we conducted a quantitative trait locus (QTL) analysis pertaining to the concentrations of three major tanshinone components, cryptotanshinone, tanshinone I, and tanshinone IIA, in S. miltiorrhiza. This extensive investigation was conducted across three distinct planting environments, ultimately identifying a comprehensive repertoire of 27 discernible QTLs. These QTLs were mapped onto four distinct linkage groups (LG), namely LG1, LG5, LG6, and LG7, which explained 3.11%-37.85% phenotypic variation. Candidate genes were projected based on consistent QTLs detected for each active ingredient in three environments. Nineteen putative candidate genes involved in the regulation of tanshinone biosynthesis were identified. These genes participate in primary metabolic and multiple branching terpenoid biosynthesis pathways, forming a complex regulatory network. Our findings have the potential to offer novel insights into advancing the understanding of the regulatory mechanisms governing tanshinone biosynthesis. Furthermore, these results establish crucial groundwork for gene discovery, marker-assisted selection breeding, and map-based cloning of functional genes associated with tanshinone content in S. miltiorrhiza.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-024-10964-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10964-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Quantitative Trait Locus Mapping and Candidate Gene Analysis of the Contents of Three Tanshinone Components in Salvia miltiorrhiza Bunge.
Tanshinones are abietane diterpenoid quinone compounds with diverse biological activities and pharmacological effects found in Salvia miltiorrhiza. Leveraging the high-density genetic map established through our prior research endeavors, we conducted a quantitative trait locus (QTL) analysis pertaining to the concentrations of three major tanshinone components, cryptotanshinone, tanshinone I, and tanshinone IIA, in S. miltiorrhiza. This extensive investigation was conducted across three distinct planting environments, ultimately identifying a comprehensive repertoire of 27 discernible QTLs. These QTLs were mapped onto four distinct linkage groups (LG), namely LG1, LG5, LG6, and LG7, which explained 3.11%-37.85% phenotypic variation. Candidate genes were projected based on consistent QTLs detected for each active ingredient in three environments. Nineteen putative candidate genes involved in the regulation of tanshinone biosynthesis were identified. These genes participate in primary metabolic and multiple branching terpenoid biosynthesis pathways, forming a complex regulatory network. Our findings have the potential to offer novel insights into advancing the understanding of the regulatory mechanisms governing tanshinone biosynthesis. Furthermore, these results establish crucial groundwork for gene discovery, marker-assisted selection breeding, and map-based cloning of functional genes associated with tanshinone content in S. miltiorrhiza.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.