基于自整流 Memristor 的水库计算用于网络安全中的实时入侵检测。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guobin Zhang, Zijian Wang, Xuemeng Fan, Pengtao Li, Dawei Gao, Zhenyong Zhang, Qing Wan, Yishu Zhang
{"title":"基于自整流 Memristor 的水库计算用于网络安全中的实时入侵检测。","authors":"Guobin Zhang, Zijian Wang, Xuemeng Fan, Pengtao Li, Dawei Gao, Zhenyong Zhang, Qing Wan, Yishu Zhang","doi":"10.1021/acs.nanolett.4c04385","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing sophistication of cybersecurity threats, driven by the proliferation of big data and the Internet of Things (IoT), necessitates the development of advanced real-time intrusion detection systems (IDSs). In this study, we present a novel approach that integrates NiO-doped WO<sub>3-<i>x</i></sub>/ZnO bilayer self-rectifying memristors (SRMs) within a reservoir computing (RC) framework for IDS applications. The proposed crossbar array architecture exploits the exceptional dynamic properties of SRMs, achieving a classification accuracy of 93.07% on the CSE-CIC-IDS2018 data set, while demonstrating ultrahigh information-processing efficiency. Our approach not only leverages the tunable characteristics of memristors but also addresses the challenge of sneak path currents in large-scale integration, offering a robust and scalable solution for next-generation IDS. This work exemplifies the power of emerging electronics in enhancing cybersecurity through innovative hardware implementations.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Rectifying Memristor-Based Reservoir Computing for Real-Time Intrusion Detection in Cybersecurity.\",\"authors\":\"Guobin Zhang, Zijian Wang, Xuemeng Fan, Pengtao Li, Dawei Gao, Zhenyong Zhang, Qing Wan, Yishu Zhang\",\"doi\":\"10.1021/acs.nanolett.4c04385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing sophistication of cybersecurity threats, driven by the proliferation of big data and the Internet of Things (IoT), necessitates the development of advanced real-time intrusion detection systems (IDSs). In this study, we present a novel approach that integrates NiO-doped WO<sub>3-<i>x</i></sub>/ZnO bilayer self-rectifying memristors (SRMs) within a reservoir computing (RC) framework for IDS applications. The proposed crossbar array architecture exploits the exceptional dynamic properties of SRMs, achieving a classification accuracy of 93.07% on the CSE-CIC-IDS2018 data set, while demonstrating ultrahigh information-processing efficiency. Our approach not only leverages the tunable characteristics of memristors but also addresses the challenge of sneak path currents in large-scale integration, offering a robust and scalable solution for next-generation IDS. This work exemplifies the power of emerging electronics in enhancing cybersecurity through innovative hardware implementations.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c04385\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04385","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在大数据和物联网(IoT)的推动下,网络安全威胁日益复杂,因此有必要开发先进的实时入侵检测系统(IDS)。在本研究中,我们提出了一种新方法,将掺杂氧化镍的 WO3-x/ZnO 双层自整流忆阻器(SRM)集成到水库计算(RC)框架中,用于 IDS 应用。所提出的横杆阵列架构利用了 SRM 的特殊动态特性,在 CSE-CIC-IDS2018 数据集上实现了 93.07% 的分类准确率,同时展示了超高的信息处理效率。我们的方法不仅利用了忆阻器的可调特性,还解决了大规模集成中潜行路径电流的挑战,为下一代 IDS 提供了稳健且可扩展的解决方案。这项工作体现了新兴电子技术通过创新硬件实现增强网络安全的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-Rectifying Memristor-Based Reservoir Computing for Real-Time Intrusion Detection in Cybersecurity.

Self-Rectifying Memristor-Based Reservoir Computing for Real-Time Intrusion Detection in Cybersecurity.

The increasing sophistication of cybersecurity threats, driven by the proliferation of big data and the Internet of Things (IoT), necessitates the development of advanced real-time intrusion detection systems (IDSs). In this study, we present a novel approach that integrates NiO-doped WO3-x/ZnO bilayer self-rectifying memristors (SRMs) within a reservoir computing (RC) framework for IDS applications. The proposed crossbar array architecture exploits the exceptional dynamic properties of SRMs, achieving a classification accuracy of 93.07% on the CSE-CIC-IDS2018 data set, while demonstrating ultrahigh information-processing efficiency. Our approach not only leverages the tunable characteristics of memristors but also addresses the challenge of sneak path currents in large-scale integration, offering a robust and scalable solution for next-generation IDS. This work exemplifies the power of emerging electronics in enhancing cybersecurity through innovative hardware implementations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信