含有锌空位的 ZnIn2S4 纳米片工程:增强四环素的光催化降解。

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Quanhua Xie, Jiani Qin, Ting Gao, Fei Li, Nianbing Zhong, Bao Pan
{"title":"含有锌空位的 ZnIn2S4 纳米片工程:增强四环素的光催化降解。","authors":"Quanhua Xie, Jiani Qin, Ting Gao, Fei Li, Nianbing Zhong, Bao Pan","doi":"10.1021/acs.langmuir.4c03707","DOIUrl":null,"url":null,"abstract":"<p><p>Defect engineering is a highly effective strategy for accelerating charge transfer and enhancing the performance of photocatalysts. In this study, ZnIn<sub>2</sub>S<sub>4</sub> nanosheets were designed and prepared with controlled Zn vacancies to optimize the electronic band structure and localized charge density of ZnIn<sub>2</sub>S<sub>4</sub>. EPR results confirmed the formation of Zn vacancies. This modification enabled efficient capture of photoexcited charges in defect centers, thereby prolonging the carrier's lifetime. Theoretical calculations demonstrated that these vacancies induced the formation of new defect states and highly efficient surface reaction sites. As anticipated, under visible light irradiation, the photocatalytic tetracycline removal rate of the ZnIn<sub>2</sub>S<sub>4</sub> nanosheets with Zn vacancies reached 82.8% within 60 min, significantly higher than that observed for the pristine ZnIn<sub>2</sub>S<sub>4</sub> sample. These findings offer valuable insights into the deliberate construction of metal-vacancy-containing photocatalytic nanomaterials for the enhanced degradation of micropollutants.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering ZnIn<sub>2</sub>S<sub>4</sub> Nanosheets with Zinc Vacancies: Unleashing Enhanced Photocatalytic Degradation of Tetracycline.\",\"authors\":\"Quanhua Xie, Jiani Qin, Ting Gao, Fei Li, Nianbing Zhong, Bao Pan\",\"doi\":\"10.1021/acs.langmuir.4c03707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Defect engineering is a highly effective strategy for accelerating charge transfer and enhancing the performance of photocatalysts. In this study, ZnIn<sub>2</sub>S<sub>4</sub> nanosheets were designed and prepared with controlled Zn vacancies to optimize the electronic band structure and localized charge density of ZnIn<sub>2</sub>S<sub>4</sub>. EPR results confirmed the formation of Zn vacancies. This modification enabled efficient capture of photoexcited charges in defect centers, thereby prolonging the carrier's lifetime. Theoretical calculations demonstrated that these vacancies induced the formation of new defect states and highly efficient surface reaction sites. As anticipated, under visible light irradiation, the photocatalytic tetracycline removal rate of the ZnIn<sub>2</sub>S<sub>4</sub> nanosheets with Zn vacancies reached 82.8% within 60 min, significantly higher than that observed for the pristine ZnIn<sub>2</sub>S<sub>4</sub> sample. These findings offer valuable insights into the deliberate construction of metal-vacancy-containing photocatalytic nanomaterials for the enhanced degradation of micropollutants.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03707\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03707","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

缺陷工程是加速电荷转移和提高光催化剂性能的一种非常有效的策略。本研究设计并制备了具有可控锌空位的 ZnIn2S4 纳米片,以优化 ZnIn2S4 的电子能带结构和局部电荷密度。EPR 结果证实了锌空位的形成。这种改性使得光激发电荷能被有效地捕获到缺陷中心,从而延长了载流子的寿命。理论计算表明,这些空位诱导形成了新的缺陷态和高效的表面反应位点。正如预期的那样,在可见光照射下,带有 Zn 空位的 ZnIn2S4 纳米片的光催化四环素去除率在 60 分钟内达到 82.8%,明显高于原始 ZnIn2S4 样品。这些发现为有意构建含金属空位的光催化纳米材料以提高微污染物的降解能力提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering ZnIn<sub>2</sub>S<sub>4</sub> Nanosheets with Zinc Vacancies: Unleashing Enhanced Photocatalytic Degradation of Tetracycline.

Engineering ZnIn2S4 Nanosheets with Zinc Vacancies: Unleashing Enhanced Photocatalytic Degradation of Tetracycline.

Defect engineering is a highly effective strategy for accelerating charge transfer and enhancing the performance of photocatalysts. In this study, ZnIn2S4 nanosheets were designed and prepared with controlled Zn vacancies to optimize the electronic band structure and localized charge density of ZnIn2S4. EPR results confirmed the formation of Zn vacancies. This modification enabled efficient capture of photoexcited charges in defect centers, thereby prolonging the carrier's lifetime. Theoretical calculations demonstrated that these vacancies induced the formation of new defect states and highly efficient surface reaction sites. As anticipated, under visible light irradiation, the photocatalytic tetracycline removal rate of the ZnIn2S4 nanosheets with Zn vacancies reached 82.8% within 60 min, significantly higher than that observed for the pristine ZnIn2S4 sample. These findings offer valuable insights into the deliberate construction of metal-vacancy-containing photocatalytic nanomaterials for the enhanced degradation of micropollutants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信