Yangxue Liu, Ying Peng, Zhishuo Wang, Xiaoying Wei, Kun Yang
{"title":"组蛋白上胺氧高聚物的光驱动安装及其在合成稳定和特定位点的 3'-DNA-Histone 交叉连接中的应用。","authors":"Yangxue Liu, Ying Peng, Zhishuo Wang, Xiaoying Wei, Kun Yang","doi":"10.1021/acs.bioconjchem.4c00453","DOIUrl":null,"url":null,"abstract":"<p><p>Histones react with various aldehyde-containing DNA modifications to form reversible but long-lived DNA-histone cross-links. The investigation of their biochemical effects and repair mechanisms has been impeded due to their reversibility and the lack of methods for synthesizing stable and structure-defined DNA-histone cross-links. Herein, we present a visible-light-driven strategy to install an aminooxyhomolysine on a histone at a defined position. Using this method, we synthesized a hydrolytically stable and site-specific 3'-DNA-histone cross-link derived from an abasic DNA lesion. Such an adduct can be efficiently repaired by proteolysis coupled with nuclease excision. This work provides a strategy that can be readily expanded to synthesize DNA-histone cross-links derived from other aldehyde-containing DNA modifications.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-Driven Installation of Aminooxyhomolysine on Histones and Its Application for Synthesizing Stable and Site-Specific 3'-DNA-Histone Cross-Links.\",\"authors\":\"Yangxue Liu, Ying Peng, Zhishuo Wang, Xiaoying Wei, Kun Yang\",\"doi\":\"10.1021/acs.bioconjchem.4c00453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histones react with various aldehyde-containing DNA modifications to form reversible but long-lived DNA-histone cross-links. The investigation of their biochemical effects and repair mechanisms has been impeded due to their reversibility and the lack of methods for synthesizing stable and structure-defined DNA-histone cross-links. Herein, we present a visible-light-driven strategy to install an aminooxyhomolysine on a histone at a defined position. Using this method, we synthesized a hydrolytically stable and site-specific 3'-DNA-histone cross-link derived from an abasic DNA lesion. Such an adduct can be efficiently repaired by proteolysis coupled with nuclease excision. This work provides a strategy that can be readily expanded to synthesize DNA-histone cross-links derived from other aldehyde-containing DNA modifications.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry Bioconjugate\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry Bioconjugate\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.4c00453\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry Bioconjugate","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00453","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
组蛋白与各种含醛 DNA 修饰发生反应,形成可逆但持久的 DNA 组蛋白交联。由于组蛋白的可逆性以及缺乏合成稳定和结构确定的 DNA 组蛋白交联的方法,对其生化效应和修复机制的研究一直受到阻碍。在这里,我们提出了一种可见光驱动的策略,在组蛋白的特定位置上安装一个氨基氧基组氨酸。利用这种方法,我们合成了一种水解稳定、位点特异的 3'-DNA 组蛋白交联,这种交联来源于消旋 DNA 病变。这种加合物可以通过蛋白水解和核酸酶切除有效修复。这项工作提供了一种策略,可以很容易地扩展到合成来自其他含醛 DNA 修饰的 DNA 组蛋白交联。
Light-Driven Installation of Aminooxyhomolysine on Histones and Its Application for Synthesizing Stable and Site-Specific 3'-DNA-Histone Cross-Links.
Histones react with various aldehyde-containing DNA modifications to form reversible but long-lived DNA-histone cross-links. The investigation of their biochemical effects and repair mechanisms has been impeded due to their reversibility and the lack of methods for synthesizing stable and structure-defined DNA-histone cross-links. Herein, we present a visible-light-driven strategy to install an aminooxyhomolysine on a histone at a defined position. Using this method, we synthesized a hydrolytically stable and site-specific 3'-DNA-histone cross-link derived from an abasic DNA lesion. Such an adduct can be efficiently repaired by proteolysis coupled with nuclease excision. This work provides a strategy that can be readily expanded to synthesize DNA-histone cross-links derived from other aldehyde-containing DNA modifications.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.