Tony C Li , Yingqian Lin , Ling Ding , Steve Smith , April Z. Gu
{"title":"政策对厌氧消化的经济和环境可持续性的影响:工业案例研究的启示。","authors":"Tony C Li , Yingqian Lin , Ling Ding , Steve Smith , April Z. Gu","doi":"10.1016/j.biortech.2024.131815","DOIUrl":null,"url":null,"abstract":"<div><div>This paper thoroughly examines how policy incentives impact the economic and environmental sustainability of anaerobic digestion (AD) systems. It uses techno-economic and life cycle analyses, along with real industry data, to explore the entire AD process—from feedstock acceptance to digestate disposal. It evaluates the effects of various U.S. policy crediting programs on the economic viability of different AD pathways for treating sewage sludge and food waste. Tipping fees are identified as the primary driver of profitability, while policy credits play a crucial role in enhancing economic feasibility, particularly for renewable natural gas production. However, future regulatory changes could reshape this economic landscape. All AD pathways are found to significantly reduce greenhouse gas emissions, though economic outcomes are highly sensitive to digestate disposal costs and feedstock tipping fees. Co-digestion with food waste is proposed as a strategy to reduce dependence on policy credits and improve long-term economic stability.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"417 ","pages":"Article 131815"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Policy impact on economic and environmental sustainability of anaerobic digestion: Industrial case study Insights\",\"authors\":\"Tony C Li , Yingqian Lin , Ling Ding , Steve Smith , April Z. Gu\",\"doi\":\"10.1016/j.biortech.2024.131815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper thoroughly examines how policy incentives impact the economic and environmental sustainability of anaerobic digestion (AD) systems. It uses techno-economic and life cycle analyses, along with real industry data, to explore the entire AD process—from feedstock acceptance to digestate disposal. It evaluates the effects of various U.S. policy crediting programs on the economic viability of different AD pathways for treating sewage sludge and food waste. Tipping fees are identified as the primary driver of profitability, while policy credits play a crucial role in enhancing economic feasibility, particularly for renewable natural gas production. However, future regulatory changes could reshape this economic landscape. All AD pathways are found to significantly reduce greenhouse gas emissions, though economic outcomes are highly sensitive to digestate disposal costs and feedstock tipping fees. Co-digestion with food waste is proposed as a strategy to reduce dependence on policy credits and improve long-term economic stability.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"417 \",\"pages\":\"Article 131815\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852424015190\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424015190","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Policy impact on economic and environmental sustainability of anaerobic digestion: Industrial case study Insights
This paper thoroughly examines how policy incentives impact the economic and environmental sustainability of anaerobic digestion (AD) systems. It uses techno-economic and life cycle analyses, along with real industry data, to explore the entire AD process—from feedstock acceptance to digestate disposal. It evaluates the effects of various U.S. policy crediting programs on the economic viability of different AD pathways for treating sewage sludge and food waste. Tipping fees are identified as the primary driver of profitability, while policy credits play a crucial role in enhancing economic feasibility, particularly for renewable natural gas production. However, future regulatory changes could reshape this economic landscape. All AD pathways are found to significantly reduce greenhouse gas emissions, though economic outcomes are highly sensitive to digestate disposal costs and feedstock tipping fees. Co-digestion with food waste is proposed as a strategy to reduce dependence on policy credits and improve long-term economic stability.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.