Oleksandr Astakhov, Thérèse Cibaka, Lars Wieprecht, Uwe Rau, Tsvetelina Merdzhanova
{"title":"揭示电解槽特性,揭示太阳能转化为化学能的潜力:连接电化学与光伏学的快速分析方法。","authors":"Oleksandr Astakhov, Thérèse Cibaka, Lars Wieprecht, Uwe Rau, Tsvetelina Merdzhanova","doi":"10.1002/cssc.202402027","DOIUrl":null,"url":null,"abstract":"<p><p>Development of photovoltaic-electrochemical (PV-EC) systems for energy storage and industry decarbonization requires multidisciplinary collaborative efforts of different research groups from both photovoltaic and electrochemical research communities. Consequently, the evaluation of the solar-to-chemical or solar-to-fuel efficiency of a new electrolyzer (EC) as a part of a PV-EC system is a time-consuming task that is challenging in a routine optimization loop. To address this issue, a new rapid assessment method is proposed. This method employs power balance requirements to unfold the input EC characteristics into the parameter space of PV-EC systems. The system parameters, composed with the EC output characteristics, yield the solar-to-chemical efficiency attainable by the electrolyzer in combination with any PV device under any irradiance at any relative PV-to-EC scaling and any mode of power coupling. This comprehensive overview is achieved via a mathematically simple conversion of the EC characteristics in any spreadsheet software. The method, designed to streamline the development and minimize the efforts of both the photovoltaic and electrochemical communities, is demonstrated via the analysis of CO2-reduction electrolyzer characteristics and verified with dedicated PV-EC experiments.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402027"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unfolding Electrolyzer Characteristics to Reveal Solar-to-Chemical Efficiency Potential: Rapid Analysis Method Bridging Electrochemistry and Photovoltaics.\",\"authors\":\"Oleksandr Astakhov, Thérèse Cibaka, Lars Wieprecht, Uwe Rau, Tsvetelina Merdzhanova\",\"doi\":\"10.1002/cssc.202402027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Development of photovoltaic-electrochemical (PV-EC) systems for energy storage and industry decarbonization requires multidisciplinary collaborative efforts of different research groups from both photovoltaic and electrochemical research communities. Consequently, the evaluation of the solar-to-chemical or solar-to-fuel efficiency of a new electrolyzer (EC) as a part of a PV-EC system is a time-consuming task that is challenging in a routine optimization loop. To address this issue, a new rapid assessment method is proposed. This method employs power balance requirements to unfold the input EC characteristics into the parameter space of PV-EC systems. The system parameters, composed with the EC output characteristics, yield the solar-to-chemical efficiency attainable by the electrolyzer in combination with any PV device under any irradiance at any relative PV-to-EC scaling and any mode of power coupling. This comprehensive overview is achieved via a mathematically simple conversion of the EC characteristics in any spreadsheet software. The method, designed to streamline the development and minimize the efforts of both the photovoltaic and electrochemical communities, is demonstrated via the analysis of CO2-reduction electrolyzer characteristics and verified with dedicated PV-EC experiments.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402027\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402027\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402027","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Unfolding Electrolyzer Characteristics to Reveal Solar-to-Chemical Efficiency Potential: Rapid Analysis Method Bridging Electrochemistry and Photovoltaics.
Development of photovoltaic-electrochemical (PV-EC) systems for energy storage and industry decarbonization requires multidisciplinary collaborative efforts of different research groups from both photovoltaic and electrochemical research communities. Consequently, the evaluation of the solar-to-chemical or solar-to-fuel efficiency of a new electrolyzer (EC) as a part of a PV-EC system is a time-consuming task that is challenging in a routine optimization loop. To address this issue, a new rapid assessment method is proposed. This method employs power balance requirements to unfold the input EC characteristics into the parameter space of PV-EC systems. The system parameters, composed with the EC output characteristics, yield the solar-to-chemical efficiency attainable by the electrolyzer in combination with any PV device under any irradiance at any relative PV-to-EC scaling and any mode of power coupling. This comprehensive overview is achieved via a mathematically simple conversion of the EC characteristics in any spreadsheet software. The method, designed to streamline the development and minimize the efforts of both the photovoltaic and electrochemical communities, is demonstrated via the analysis of CO2-reduction electrolyzer characteristics and verified with dedicated PV-EC experiments.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology