铜掺杂的 NH2-MIL-125(Ti):增强光催化 H2 生成和 CO2 光转化的多功能可见光驱动平台。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Anna Pancielejko, Mateusz A Baluk, Hanna Zagórska, Magdalena Miodyńska-Melzer, Anna Gołąbiewska, Tomasz Klimczuk, Mirosław Krawczyk, Mirosława Pawlyta, Krzysztof Matus, Alicja Mikolajczyk, Henry P Pinto, Aleksandra Pieczyńska, Joanna Dołżonek, Adriana Zaleska-Medynska
{"title":"铜掺杂的 NH2-MIL-125(Ti):增强光催化 H2 生成和 CO2 光转化的多功能可见光驱动平台。","authors":"Anna Pancielejko, Mateusz A Baluk, Hanna Zagórska, Magdalena Miodyńska-Melzer, Anna Gołąbiewska, Tomasz Klimczuk, Mirosław Krawczyk, Mirosława Pawlyta, Krzysztof Matus, Alicja Mikolajczyk, Henry P Pinto, Aleksandra Pieczyńska, Joanna Dołżonek, Adriana Zaleska-Medynska","doi":"10.1039/d4mh01116c","DOIUrl":null,"url":null,"abstract":"<p><p>Here, we present for the first time an efficient platform for simultaneous H<sub>2</sub> generation and CO<sub>2</sub> conversion into HCOOH, utilizing a Cu-incorporated NH<sub>2</sub>-MIL-125(Ti) material with triethanolamine as the sacrificial agent. When subjected to light, Cu-NH<sub>2</sub>-MIL-125(Ti) exhibits a remarkable enhancement in H<sub>2</sub> generation, with a 30-fold increase under UV-Vis light and an 8-fold increase under visible irradiation compared to the pristine MOF. The study on the CO<sub>2</sub> photoreduction ability of Cu-NH<sub>2</sub>-MIL-125(Ti) indicated successful conversion into formic acid yielding 62.4 μmol g<sub>cat</sub><sup>-1</sup> under visible irradiation. This notable improvement in photocatalytic activity can be attributed to the heightened light absorption capacity and efficient charge transportation and separation mechanisms inherent in Cu-NH<sub>2</sub>-MIL-125(Ti). Furthermore, the stability of the Cu-NH<sub>2</sub>-MIL-125(Ti) photocatalyst remains steady even after 24 hours of continuous irradiation. The theoretical simulations suggest that Cu introduction effectively reduces the bandgap while leaving the position and composition of the valence band unaffected.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu-incorporated NH<sub>2</sub>-MIL-125(Ti): a versatile visible-light-driven platform for enhanced photocatalytic H<sub>2</sub> generation and CO<sub>2</sub> photoconversion.\",\"authors\":\"Anna Pancielejko, Mateusz A Baluk, Hanna Zagórska, Magdalena Miodyńska-Melzer, Anna Gołąbiewska, Tomasz Klimczuk, Mirosław Krawczyk, Mirosława Pawlyta, Krzysztof Matus, Alicja Mikolajczyk, Henry P Pinto, Aleksandra Pieczyńska, Joanna Dołżonek, Adriana Zaleska-Medynska\",\"doi\":\"10.1039/d4mh01116c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here, we present for the first time an efficient platform for simultaneous H<sub>2</sub> generation and CO<sub>2</sub> conversion into HCOOH, utilizing a Cu-incorporated NH<sub>2</sub>-MIL-125(Ti) material with triethanolamine as the sacrificial agent. When subjected to light, Cu-NH<sub>2</sub>-MIL-125(Ti) exhibits a remarkable enhancement in H<sub>2</sub> generation, with a 30-fold increase under UV-Vis light and an 8-fold increase under visible irradiation compared to the pristine MOF. The study on the CO<sub>2</sub> photoreduction ability of Cu-NH<sub>2</sub>-MIL-125(Ti) indicated successful conversion into formic acid yielding 62.4 μmol g<sub>cat</sub><sup>-1</sup> under visible irradiation. This notable improvement in photocatalytic activity can be attributed to the heightened light absorption capacity and efficient charge transportation and separation mechanisms inherent in Cu-NH<sub>2</sub>-MIL-125(Ti). Furthermore, the stability of the Cu-NH<sub>2</sub>-MIL-125(Ti) photocatalyst remains steady even after 24 hours of continuous irradiation. The theoretical simulations suggest that Cu introduction effectively reduces the bandgap while leaving the position and composition of the valence band unaffected.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01116c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01116c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们首次利用以三乙醇胺为牺牲剂的 Cu 嵌入 NH2-MIL-125(Ti)材料,提出了一种同时生成 H2 和将 CO2 转化为 HCOOH 的高效平台。与原始 MOF 相比,Cu-NH2-MIL-125(Ti) 在光照下生成 H2 的能力显著提高,在紫外可见光下提高了 30 倍,在可见光照射下提高了 8 倍。对 Cu-NH2-MIL-125(Ti) CO2 光还原能力的研究表明,在可见光照射下,它能成功地将 CO2 转化为甲酸,产生 62.4 μmol gcat-1。光催化活性的显著提高可归因于 Cu-NH2-MIL-125(Ti) 所固有的更强的光吸收能力以及高效的电荷传输和分离机制。此外,Cu-NH2-MIL-125(Ti) 光催化剂的稳定性在连续照射 24 小时后仍能保持稳定。理论模拟表明,铜的引入有效地减小了带隙,同时价带的位置和组成未受影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cu-incorporated NH2-MIL-125(Ti): a versatile visible-light-driven platform for enhanced photocatalytic H2 generation and CO2 photoconversion.

Here, we present for the first time an efficient platform for simultaneous H2 generation and CO2 conversion into HCOOH, utilizing a Cu-incorporated NH2-MIL-125(Ti) material with triethanolamine as the sacrificial agent. When subjected to light, Cu-NH2-MIL-125(Ti) exhibits a remarkable enhancement in H2 generation, with a 30-fold increase under UV-Vis light and an 8-fold increase under visible irradiation compared to the pristine MOF. The study on the CO2 photoreduction ability of Cu-NH2-MIL-125(Ti) indicated successful conversion into formic acid yielding 62.4 μmol gcat-1 under visible irradiation. This notable improvement in photocatalytic activity can be attributed to the heightened light absorption capacity and efficient charge transportation and separation mechanisms inherent in Cu-NH2-MIL-125(Ti). Furthermore, the stability of the Cu-NH2-MIL-125(Ti) photocatalyst remains steady even after 24 hours of continuous irradiation. The theoretical simulations suggest that Cu introduction effectively reduces the bandgap while leaving the position and composition of the valence band unaffected.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信