断层断裂带诱发的 TBM 干扰机械坍塌高度调查及适用性验证

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Qian Zhang , Yan Ma , Yanliang Du , Lijie Du , Minyuan Wang , Sunhao Zhang , Yaoqi Nie
{"title":"断层断裂带诱发的 TBM 干扰机械坍塌高度调查及适用性验证","authors":"Qian Zhang ,&nbsp;Yan Ma ,&nbsp;Yanliang Du ,&nbsp;Lijie Du ,&nbsp;Minyuan Wang ,&nbsp;Sunhao Zhang ,&nbsp;Yaoqi Nie","doi":"10.1016/j.tust.2024.106196","DOIUrl":null,"url":null,"abstract":"<div><div>The large-scale collapse resulting from TBM tunneling within fault fracture zones leads to cutterhead and shield jamming. Given the significant gravitational force of the rock mass and ground stress, the collapse height serves as a key identification factor. Starting with the jamming scenarios of the cutterhead and shield, a mechanical expression for the theoretical model of collapse height is formulated. By incorporating numerical model findings on the extent of rock mass displacement deformation due to excavation disturbance, data from the Xianglushan Tunnel are used to verify the alignment between the theoretical model and simulation results. he findings indicate that the theoretical model-derived collapse height threshold for cutterhead jamming is 7.21 m above the TBM, showing a 90 % agreement with the numerical simulation result of 7.98 m and the maximum collapse cavity height measured in the field (8.0 m). The collapse height of 20.46 m for the shield jamming case corresponds to the open TBM scenario, where shield jamming is less likely. Additionally, the theoretically predicted average collapse heights of 5.31 m, 6.57 m, and 7.51 m under other contact scenarios closely correlate with the simulated displacement deformation zone heights of 5.03 m, 6.92 m, and 7.60 m, demonstrating a 94 % concordance. This theoretical model, showing strong applicability, is further extended to account for varying shield lengths (Ld) and contact range scenarios. For a shield length of 6 m, the predicted threshold value of collapse height for shield jamming aligns with both the theoretical predictions and the simulated rock mass displacement range. This research introduces predictive methodologies for addressing collapse-induced jamming incidents within fault fracture zones.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"155 ","pages":"Article 106196"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation into the collapse height of TBM jamming machinery induced by fault fracture zones and the verification of applicability\",\"authors\":\"Qian Zhang ,&nbsp;Yan Ma ,&nbsp;Yanliang Du ,&nbsp;Lijie Du ,&nbsp;Minyuan Wang ,&nbsp;Sunhao Zhang ,&nbsp;Yaoqi Nie\",\"doi\":\"10.1016/j.tust.2024.106196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The large-scale collapse resulting from TBM tunneling within fault fracture zones leads to cutterhead and shield jamming. Given the significant gravitational force of the rock mass and ground stress, the collapse height serves as a key identification factor. Starting with the jamming scenarios of the cutterhead and shield, a mechanical expression for the theoretical model of collapse height is formulated. By incorporating numerical model findings on the extent of rock mass displacement deformation due to excavation disturbance, data from the Xianglushan Tunnel are used to verify the alignment between the theoretical model and simulation results. he findings indicate that the theoretical model-derived collapse height threshold for cutterhead jamming is 7.21 m above the TBM, showing a 90 % agreement with the numerical simulation result of 7.98 m and the maximum collapse cavity height measured in the field (8.0 m). The collapse height of 20.46 m for the shield jamming case corresponds to the open TBM scenario, where shield jamming is less likely. Additionally, the theoretically predicted average collapse heights of 5.31 m, 6.57 m, and 7.51 m under other contact scenarios closely correlate with the simulated displacement deformation zone heights of 5.03 m, 6.92 m, and 7.60 m, demonstrating a 94 % concordance. This theoretical model, showing strong applicability, is further extended to account for varying shield lengths (Ld) and contact range scenarios. For a shield length of 6 m, the predicted threshold value of collapse height for shield jamming aligns with both the theoretical predictions and the simulated rock mass displacement range. This research introduces predictive methodologies for addressing collapse-induced jamming incidents within fault fracture zones.</div></div>\",\"PeriodicalId\":49414,\"journal\":{\"name\":\"Tunnelling and Underground Space Technology\",\"volume\":\"155 \",\"pages\":\"Article 106196\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunnelling and Underground Space Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S088677982400614X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088677982400614X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在断层破碎带内进行隧道掘进时产生的大规模塌方会导致刀盘和盾构堵塞。考虑到岩体的巨大重力和地应力,塌方高度是一个关键的识别因素。从刀头和盾构的堵塞情况入手,提出了坍塌高度理论模型的力学表达式。研究结果表明,理论模型推导出的刀盘堵塞坍塌高度临界值为 TBM 上方 7.21 米,与数值模拟结果 7.98 米和现场测量的最大坍塌腔高度(8.0 米)吻合度高达 90%。盾构干扰情况下的坍塌高度为 20.46 米,与盾构干扰可能性较低的开放式 TBM 情况相符。此外,在其他接触情况下,理论预测的平均坍塌高度为 5.31 米、6.57 米和 7.51 米,与模拟的位移变形区高度 5.03 米、6.92 米和 7.60 米密切相关,吻合度高达 94%。该理论模型显示出很强的适用性,并进一步扩展到不同的盾构长度(Ld)和接触范围情况。在盾构长度为 6 米时,预测的盾构堵塞坍塌高度临界值与理论预测值和模拟岩体位移范围一致。这项研究为解决断层破碎带内坍塌引发的堵塞事故引入了预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation into the collapse height of TBM jamming machinery induced by fault fracture zones and the verification of applicability
The large-scale collapse resulting from TBM tunneling within fault fracture zones leads to cutterhead and shield jamming. Given the significant gravitational force of the rock mass and ground stress, the collapse height serves as a key identification factor. Starting with the jamming scenarios of the cutterhead and shield, a mechanical expression for the theoretical model of collapse height is formulated. By incorporating numerical model findings on the extent of rock mass displacement deformation due to excavation disturbance, data from the Xianglushan Tunnel are used to verify the alignment between the theoretical model and simulation results. he findings indicate that the theoretical model-derived collapse height threshold for cutterhead jamming is 7.21 m above the TBM, showing a 90 % agreement with the numerical simulation result of 7.98 m and the maximum collapse cavity height measured in the field (8.0 m). The collapse height of 20.46 m for the shield jamming case corresponds to the open TBM scenario, where shield jamming is less likely. Additionally, the theoretically predicted average collapse heights of 5.31 m, 6.57 m, and 7.51 m under other contact scenarios closely correlate with the simulated displacement deformation zone heights of 5.03 m, 6.92 m, and 7.60 m, demonstrating a 94 % concordance. This theoretical model, showing strong applicability, is further extended to account for varying shield lengths (Ld) and contact range scenarios. For a shield length of 6 m, the predicted threshold value of collapse height for shield jamming aligns with both the theoretical predictions and the simulated rock mass displacement range. This research introduces predictive methodologies for addressing collapse-induced jamming incidents within fault fracture zones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信