基于模型试验的 EICP 技术用于 TBM 隧道衬砌背后回填层加固的可行性分析

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Ming Huang , Qiwu Jiang , Kai Xu , Chaoshui Xu
{"title":"基于模型试验的 EICP 技术用于 TBM 隧道衬砌背后回填层加固的可行性分析","authors":"Ming Huang ,&nbsp;Qiwu Jiang ,&nbsp;Kai Xu ,&nbsp;Chaoshui Xu","doi":"10.1016/j.tust.2024.106172","DOIUrl":null,"url":null,"abstract":"<div><div>In tunnelling using tunnel boring machine (TBM), the surrounding rocks are typically supported by precast lining segments, pea-gravel backfilling and grouting. The compactness of the backfill layer is critical for ensuring the safety of the tunnel construction. However, poor fluidity of cement generally leads to uneven grouting effects, resulting in lower density in certain areas of the backfill layer. In contrast, enzyme-induced carbonate precipitation (EICP) is an environmentally friendly and sustainable technique which has superior mobility and diffusivity compared to cement. To investigate the reinforcement effects of EICP technique on backfill layer, a series of bio-cemented sand column tests and model tests were conducted in this study. The optimal working range of pea gravel and sand for effective bio-cementation were determined by comparing the permeability, unconfined compressive strength (<em>UCS</em>), calcium carbonate content (<em>CCC</em>), and wave velocity of bio-cemented sand columns. The effects and homogeneity of reinforcement based on model tests were assessed by point load tests, wave velocity measurements, and calcium carbonate content evaluations. The model tests with different grouting hole layout density were conducted to obtain the optimal hole placement scheme. The column test results demonstrated that the optimal working range of pea gravel to sand ratio for effective bio-cementation is 1.25–1.5. As the number of grouting cycles increases, the point load strength, wave velocity, <em>CCC</em> and <em>UCS</em> of the specimens increase while the permeability of the specimens decreases. The point load strength of bio-cemented specimens could reach up to 16.53 MPa, while the permeability was reduced by three orders of magnitude compared with that of untreated specimens. The EICP has been demonstrated to be an effective technique capable of improving the compactness and strength of the backfill layer, with aggregates effectively cemented by calcium carbonate generated. The model test results demonstrated that the full-coverage arrangement hole scheme achieves uniform cementation, while the space arrangement hole scheme produces concentrated CaCO<sub>3</sub> near grouting holes. Furthermore, a new and improved grouting scheme is proposed based on the model test results. The data obtained in this study offer valuable references for the reinforcement of the backfill layer in TBM tunnelling using the EICP technology.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"155 ","pages":"Article 106172"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility analysis of EICP technique for reinforcing backfill layer behind TBM tunnel linings based on model tests\",\"authors\":\"Ming Huang ,&nbsp;Qiwu Jiang ,&nbsp;Kai Xu ,&nbsp;Chaoshui Xu\",\"doi\":\"10.1016/j.tust.2024.106172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In tunnelling using tunnel boring machine (TBM), the surrounding rocks are typically supported by precast lining segments, pea-gravel backfilling and grouting. The compactness of the backfill layer is critical for ensuring the safety of the tunnel construction. However, poor fluidity of cement generally leads to uneven grouting effects, resulting in lower density in certain areas of the backfill layer. In contrast, enzyme-induced carbonate precipitation (EICP) is an environmentally friendly and sustainable technique which has superior mobility and diffusivity compared to cement. To investigate the reinforcement effects of EICP technique on backfill layer, a series of bio-cemented sand column tests and model tests were conducted in this study. The optimal working range of pea gravel and sand for effective bio-cementation were determined by comparing the permeability, unconfined compressive strength (<em>UCS</em>), calcium carbonate content (<em>CCC</em>), and wave velocity of bio-cemented sand columns. The effects and homogeneity of reinforcement based on model tests were assessed by point load tests, wave velocity measurements, and calcium carbonate content evaluations. The model tests with different grouting hole layout density were conducted to obtain the optimal hole placement scheme. The column test results demonstrated that the optimal working range of pea gravel to sand ratio for effective bio-cementation is 1.25–1.5. As the number of grouting cycles increases, the point load strength, wave velocity, <em>CCC</em> and <em>UCS</em> of the specimens increase while the permeability of the specimens decreases. The point load strength of bio-cemented specimens could reach up to 16.53 MPa, while the permeability was reduced by three orders of magnitude compared with that of untreated specimens. The EICP has been demonstrated to be an effective technique capable of improving the compactness and strength of the backfill layer, with aggregates effectively cemented by calcium carbonate generated. The model test results demonstrated that the full-coverage arrangement hole scheme achieves uniform cementation, while the space arrangement hole scheme produces concentrated CaCO<sub>3</sub> near grouting holes. Furthermore, a new and improved grouting scheme is proposed based on the model test results. The data obtained in this study offer valuable references for the reinforcement of the backfill layer in TBM tunnelling using the EICP technology.</div></div>\",\"PeriodicalId\":49414,\"journal\":{\"name\":\"Tunnelling and Underground Space Technology\",\"volume\":\"155 \",\"pages\":\"Article 106172\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunnelling and Underground Space Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S088677982400590X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088677982400590X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在使用隧道掘进机(TBM)挖掘隧道时,围岩通常由预制衬砌段、豌豆碎石回填和灌浆支撑。回填层的密实度对于确保隧道施工安全至关重要。然而,水泥流动性差通常会导致灌浆效果不均匀,从而降低回填层某些区域的密实度。相比之下,酶诱导碳酸盐沉淀(EICP)是一种环保且可持续的技术,与水泥相比,它具有更优越的流动性和扩散性。为了研究 EICP 技术对回填层的加固效果,本研究进行了一系列生物加固砂柱试验和模型试验。通过比较生物加固砂柱的渗透性、无侧限抗压强度(UCS)、碳酸钙含量(CCC)和波速,确定了有效生物加固的最佳豌豆砾石和砂的工作范围。通过点荷载试验、波速测量和碳酸钙含量评估,对基于模型试验的加固效果和均匀性进行了评估。进行了不同灌浆孔布置密度的模型试验,以获得最佳布孔方案。柱状试验结果表明,有效生物固结的最佳豌豆砾石砂比工作范围为 1.25-1.5。随着灌浆循环次数的增加,试样的点荷载强度、波速、CCC 和 UCS 均有所上升,而试样的渗透率则有所下降。与未经处理的试样相比,生物加固试样的点荷载强度可达 16.53 兆帕,而渗透性则降低了三个数量级。实验证明,EICP 是一种有效的技术,能够提高回填层的密实度和强度,并通过生成的碳酸钙有效固结集料。模型试验结果表明,全覆盖布孔方案可实现均匀固结,而空间布孔方案则会在灌浆孔附近产生集中的 CaCO3。此外,还根据模型试验结果提出了一种新的改进型灌浆方案。本研究获得的数据为使用 EICP 技术加固 TBM 隧道回填层提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasibility analysis of EICP technique for reinforcing backfill layer behind TBM tunnel linings based on model tests
In tunnelling using tunnel boring machine (TBM), the surrounding rocks are typically supported by precast lining segments, pea-gravel backfilling and grouting. The compactness of the backfill layer is critical for ensuring the safety of the tunnel construction. However, poor fluidity of cement generally leads to uneven grouting effects, resulting in lower density in certain areas of the backfill layer. In contrast, enzyme-induced carbonate precipitation (EICP) is an environmentally friendly and sustainable technique which has superior mobility and diffusivity compared to cement. To investigate the reinforcement effects of EICP technique on backfill layer, a series of bio-cemented sand column tests and model tests were conducted in this study. The optimal working range of pea gravel and sand for effective bio-cementation were determined by comparing the permeability, unconfined compressive strength (UCS), calcium carbonate content (CCC), and wave velocity of bio-cemented sand columns. The effects and homogeneity of reinforcement based on model tests were assessed by point load tests, wave velocity measurements, and calcium carbonate content evaluations. The model tests with different grouting hole layout density were conducted to obtain the optimal hole placement scheme. The column test results demonstrated that the optimal working range of pea gravel to sand ratio for effective bio-cementation is 1.25–1.5. As the number of grouting cycles increases, the point load strength, wave velocity, CCC and UCS of the specimens increase while the permeability of the specimens decreases. The point load strength of bio-cemented specimens could reach up to 16.53 MPa, while the permeability was reduced by three orders of magnitude compared with that of untreated specimens. The EICP has been demonstrated to be an effective technique capable of improving the compactness and strength of the backfill layer, with aggregates effectively cemented by calcium carbonate generated. The model test results demonstrated that the full-coverage arrangement hole scheme achieves uniform cementation, while the space arrangement hole scheme produces concentrated CaCO3 near grouting holes. Furthermore, a new and improved grouting scheme is proposed based on the model test results. The data obtained in this study offer valuable references for the reinforcement of the backfill layer in TBM tunnelling using the EICP technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信