抗生素耐药性的生理代价:细菌核糖体变异的启示

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Eun Chae Moon, Tushar Modi, Dong-yeon D. Lee, Danis Yangaliev, Jordi Garcia-Ojalvo, S. Banu Ozkan, Gürol M. Süel
{"title":"抗生素耐药性的生理代价:细菌核糖体变异的启示","authors":"Eun Chae Moon,&nbsp;Tushar Modi,&nbsp;Dong-yeon D. Lee,&nbsp;Danis Yangaliev,&nbsp;Jordi Garcia-Ojalvo,&nbsp;S. Banu Ozkan,&nbsp;Gürol M. Süel","doi":"10.1126/sciadv.adq5249","DOIUrl":null,"url":null,"abstract":"<div >Antibiotic-resistant ribosome variants arise spontaneously in bacterial populations; however, their impact on the overall bacterial physiology remains unclear. We studied the naturally arising antibiotic-resistant L22* ribosome variant of <i>Bacillus subtilis</i> and identified a Mg<sup>2+</sup>-dependent physiological cost. Coculture competition experiments show that Mg<sup>2+</sup> limitation hinders the growth of the L22* variant more than the wild type (WT), even under antibiotic pressure. This growth disadvantage of L22* cells is not due to lower ribosome abundance but rather due to reduced intracellular Mg<sup>2+</sup> levels. Coarse-grained elastic-network modeling of ribosome conformational dynamics suggests that L22* ribosomes associate more tightly with Mg<sup>2+</sup> when compared to WT. We combined the structural modeling and experimental measurements in a steady-state model to predict cellular adenosine 5′-triphosphate (ATP) levels, which also depend on Mg<sup>2+</sup>. Experiments confirmed a predicted ATP drop in L22* cells under Mg<sup>2+</sup> limitation, while WT cells were less affected. Intracellular competition for a finite Mg<sup>2+</sup> pool can thus suppress the establishment of an antibiotic-resistant ribosome variant.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq5249","citationCount":"0","resultStr":"{\"title\":\"Physiological cost of antibiotic resistance: Insights from a ribosome variant in bacteria\",\"authors\":\"Eun Chae Moon,&nbsp;Tushar Modi,&nbsp;Dong-yeon D. Lee,&nbsp;Danis Yangaliev,&nbsp;Jordi Garcia-Ojalvo,&nbsp;S. Banu Ozkan,&nbsp;Gürol M. Süel\",\"doi\":\"10.1126/sciadv.adq5249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Antibiotic-resistant ribosome variants arise spontaneously in bacterial populations; however, their impact on the overall bacterial physiology remains unclear. We studied the naturally arising antibiotic-resistant L22* ribosome variant of <i>Bacillus subtilis</i> and identified a Mg<sup>2+</sup>-dependent physiological cost. Coculture competition experiments show that Mg<sup>2+</sup> limitation hinders the growth of the L22* variant more than the wild type (WT), even under antibiotic pressure. This growth disadvantage of L22* cells is not due to lower ribosome abundance but rather due to reduced intracellular Mg<sup>2+</sup> levels. Coarse-grained elastic-network modeling of ribosome conformational dynamics suggests that L22* ribosomes associate more tightly with Mg<sup>2+</sup> when compared to WT. We combined the structural modeling and experimental measurements in a steady-state model to predict cellular adenosine 5′-triphosphate (ATP) levels, which also depend on Mg<sup>2+</sup>. Experiments confirmed a predicted ATP drop in L22* cells under Mg<sup>2+</sup> limitation, while WT cells were less affected. Intracellular competition for a finite Mg<sup>2+</sup> pool can thus suppress the establishment of an antibiotic-resistant ribosome variant.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adq5249\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adq5249\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq5249","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

细菌群体中会自发产生抗生素核糖体变体,但它们对细菌整体生理机能的影响尚不清楚。我们对枯草芽孢杆菌自然产生的抗生素核糖体变体 L22* 进行了研究,发现了一种依赖于 Mg 2+ 的生理代价。共培养竞争实验表明,即使在抗生素压力下,Mg 2+ 限制对 L22* 核糖体变体生长的阻碍也大于野生型(WT)。L22*细胞的这种生长劣势不是由于核糖体丰度较低,而是由于细胞内Mg 2+水平降低。核糖体构象动力学的粗粒度弹性网络建模表明,与 WT 相比,L22* 核糖体与 Mg 2+ 结合得更紧密。我们将结构建模和实验测量结果结合到一个稳态模型中,以预测细胞腺苷-5′-三磷酸(ATP)水平,该水平也取决于 Mg 2+。实验证实,在 Mg 2+ 限制条件下,L22* 细胞中的 ATP 会下降,而 WT 细胞受到的影响较小。因此,细胞内对有限 Mg 2+ 池的竞争可抑制抗生素核糖体变体的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physiological cost of antibiotic resistance: Insights from a ribosome variant in bacteria
Antibiotic-resistant ribosome variants arise spontaneously in bacterial populations; however, their impact on the overall bacterial physiology remains unclear. We studied the naturally arising antibiotic-resistant L22* ribosome variant of Bacillus subtilis and identified a Mg2+-dependent physiological cost. Coculture competition experiments show that Mg2+ limitation hinders the growth of the L22* variant more than the wild type (WT), even under antibiotic pressure. This growth disadvantage of L22* cells is not due to lower ribosome abundance but rather due to reduced intracellular Mg2+ levels. Coarse-grained elastic-network modeling of ribosome conformational dynamics suggests that L22* ribosomes associate more tightly with Mg2+ when compared to WT. We combined the structural modeling and experimental measurements in a steady-state model to predict cellular adenosine 5′-triphosphate (ATP) levels, which also depend on Mg2+. Experiments confirmed a predicted ATP drop in L22* cells under Mg2+ limitation, while WT cells were less affected. Intracellular competition for a finite Mg2+ pool can thus suppress the establishment of an antibiotic-resistant ribosome variant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信