细胞对细胞外基质粘性能量耗散的反应超过了高刚性感应

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Carla Huerta-López, Alejandro Clemente-Manteca, Diana Velázquez-Carreras, Francisco M. Espinosa, Juan G. Sanchez, Álvaro Martínez-del-Pozo, María García-García, Sara Martín-Colomo, Andrea Rodríguez-Blanco, Ricardo Esteban-González, Francisco M. Martín-Zamora, Luis I. Gutierrez-Rus, Ricardo Garcia, Pere Roca-Cusachs, Alberto Elosegui-Artola, Miguel A. del Pozo, Elías Herrero-Galán, Pablo Sáez, Gustavo R. Plaza, Jorge Alegre-Cebollada
{"title":"细胞对细胞外基质粘性能量耗散的反应超过了高刚性感应","authors":"Carla Huerta-López,&nbsp;Alejandro Clemente-Manteca,&nbsp;Diana Velázquez-Carreras,&nbsp;Francisco M. Espinosa,&nbsp;Juan G. Sanchez,&nbsp;Álvaro Martínez-del-Pozo,&nbsp;María García-García,&nbsp;Sara Martín-Colomo,&nbsp;Andrea Rodríguez-Blanco,&nbsp;Ricardo Esteban-González,&nbsp;Francisco M. Martín-Zamora,&nbsp;Luis I. Gutierrez-Rus,&nbsp;Ricardo Garcia,&nbsp;Pere Roca-Cusachs,&nbsp;Alberto Elosegui-Artola,&nbsp;Miguel A. del Pozo,&nbsp;Elías Herrero-Galán,&nbsp;Pablo Sáez,&nbsp;Gustavo R. Plaza,&nbsp;Jorge Alegre-Cebollada","doi":"10.1126/sciadv.adf9758","DOIUrl":null,"url":null,"abstract":"<div >The mechanics of the extracellular matrix (ECM) determine cell activity and fate through mechanoresponsive proteins including Yes-associated protein 1 (YAP). Rigidity and viscous relaxation have emerged as the main mechanical properties of the ECM steering cell behavior. However, how cells integrate coexisting ECM rigidity and viscosity cues remains poorly understood, particularly in the high-stiffness regime. Here, we have exploited engineered stiff viscoelastic protein hydrogels to show that, contrary to current models of cell-ECM interaction, substrate viscous energy dissipation attenuates mechanosensing even when cells are exposed to higher effective rigidity. This unexpected behavior is however readily captured by a pull-and-hold model of molecular clutch–based cell mechanosensing, which also recapitulates opposite cellular response at low rigidities. Consistent with predictions of the pull-and-hold model, we find that myosin inhibition can boost mechanosensing on cells cultured on dissipative matrices. Together, our work provides general mechanistic understanding on how cells respond to the viscoelastic properties of the ECM.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adf9758","citationCount":"0","resultStr":"{\"title\":\"Cell response to extracellular matrix viscous energy dissipation outweighs high-rigidity sensing\",\"authors\":\"Carla Huerta-López,&nbsp;Alejandro Clemente-Manteca,&nbsp;Diana Velázquez-Carreras,&nbsp;Francisco M. Espinosa,&nbsp;Juan G. Sanchez,&nbsp;Álvaro Martínez-del-Pozo,&nbsp;María García-García,&nbsp;Sara Martín-Colomo,&nbsp;Andrea Rodríguez-Blanco,&nbsp;Ricardo Esteban-González,&nbsp;Francisco M. Martín-Zamora,&nbsp;Luis I. Gutierrez-Rus,&nbsp;Ricardo Garcia,&nbsp;Pere Roca-Cusachs,&nbsp;Alberto Elosegui-Artola,&nbsp;Miguel A. del Pozo,&nbsp;Elías Herrero-Galán,&nbsp;Pablo Sáez,&nbsp;Gustavo R. Plaza,&nbsp;Jorge Alegre-Cebollada\",\"doi\":\"10.1126/sciadv.adf9758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The mechanics of the extracellular matrix (ECM) determine cell activity and fate through mechanoresponsive proteins including Yes-associated protein 1 (YAP). Rigidity and viscous relaxation have emerged as the main mechanical properties of the ECM steering cell behavior. However, how cells integrate coexisting ECM rigidity and viscosity cues remains poorly understood, particularly in the high-stiffness regime. Here, we have exploited engineered stiff viscoelastic protein hydrogels to show that, contrary to current models of cell-ECM interaction, substrate viscous energy dissipation attenuates mechanosensing even when cells are exposed to higher effective rigidity. This unexpected behavior is however readily captured by a pull-and-hold model of molecular clutch–based cell mechanosensing, which also recapitulates opposite cellular response at low rigidities. Consistent with predictions of the pull-and-hold model, we find that myosin inhibition can boost mechanosensing on cells cultured on dissipative matrices. Together, our work provides general mechanistic understanding on how cells respond to the viscoelastic properties of the ECM.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adf9758\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adf9758\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adf9758","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

细胞外基质(ECM)的机械特性通过包括是相关蛋白 1(YAP)在内的机械反应蛋白决定细胞的活动和命运。刚性和粘性松弛已成为引导细胞行为的 ECM 的主要力学特性。然而,人们对细胞如何整合共存的 ECM 刚度和粘度线索仍然知之甚少,尤其是在高刚度条件下。在这里,我们利用工程化的刚性粘弹性蛋白质水凝胶证明,与当前的细胞-ECM 相互作用模型相反,即使细胞暴露在较高的有效刚性下,基质的粘性能量耗散也会减弱机械感应。然而,基于分子离合器的细胞机械传感的拉持模型很容易捕捉到这种意想不到的行为,该模型也再现了细胞在低刚度时的相反反应。与拉-持模型的预测一致,我们发现肌球蛋白抑制能增强在耗散基质上培养的细胞的机械感应。总之,我们的工作提供了关于细胞如何对 ECM 的粘弹性做出反应的一般机理认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell response to extracellular matrix viscous energy dissipation outweighs high-rigidity sensing
The mechanics of the extracellular matrix (ECM) determine cell activity and fate through mechanoresponsive proteins including Yes-associated protein 1 (YAP). Rigidity and viscous relaxation have emerged as the main mechanical properties of the ECM steering cell behavior. However, how cells integrate coexisting ECM rigidity and viscosity cues remains poorly understood, particularly in the high-stiffness regime. Here, we have exploited engineered stiff viscoelastic protein hydrogels to show that, contrary to current models of cell-ECM interaction, substrate viscous energy dissipation attenuates mechanosensing even when cells are exposed to higher effective rigidity. This unexpected behavior is however readily captured by a pull-and-hold model of molecular clutch–based cell mechanosensing, which also recapitulates opposite cellular response at low rigidities. Consistent with predictions of the pull-and-hold model, we find that myosin inhibition can boost mechanosensing on cells cultured on dissipative matrices. Together, our work provides general mechanistic understanding on how cells respond to the viscoelastic properties of the ECM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信