通过纳米电脉冲发生器动态控制原子薄 n 型半导体中的纳米级电子密度

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sujeong Kim, Hyeongwoo Lee, Seonhye Eom, Gangseon Ji, Soo Ho Choi, Huitae Joo, Jinhyuk Bae, Ki Kang Kim, Hyeong-Ryeol Park, Kyoung-Duck Park
{"title":"通过纳米电脉冲发生器动态控制原子薄 n 型半导体中的纳米级电子密度","authors":"Sujeong Kim,&nbsp;Hyeongwoo Lee,&nbsp;Seonhye Eom,&nbsp;Gangseon Ji,&nbsp;Soo Ho Choi,&nbsp;Huitae Joo,&nbsp;Jinhyuk Bae,&nbsp;Ki Kang Kim,&nbsp;Hyeong-Ryeol Park,&nbsp;Kyoung-Duck Park","doi":"10.1126/sciadv.adr0492","DOIUrl":null,"url":null,"abstract":"<div >Controlling electron density in two-dimensional semiconductors is crucial for both comprehensive understanding of fundamental material properties and their technological applications. However, conventional electrostatic doping methods exhibit limitations, particularly in addressing electric field–induced drift and subsequent diffusion of electrons, which restrict nanoscale doping. Here, we present a tip-induced nanospectroscopic electric pulse modulator to dynamically control nanoscale electron density, thereby facilitating precise measurement of nano-optoelectronic behaviors within a MoS<sub>2</sub> monolayer. The tip-induced electric pulse enables nanoscale modulation of electron distribution as a function of electric pulse width. We simultaneously investigate spatially altering photoluminescence quantum yield at the nanoscale region. We model the extent of electron depletion region, confirming a minimum doping region with a radius of ∼265 nanometers for a 30-nanosecond pulse width. Our approach paves the way for engineering local electron density and in situ nano-optical characterization in two-dimensional materials, enabling an in-depth understanding of doping-dependent nano-optoelectronic phenomena.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr0492","citationCount":"0","resultStr":"{\"title\":\"Dynamical control of nanoscale electron density in atomically thin n-type semiconductors via nano-electric pulse generator\",\"authors\":\"Sujeong Kim,&nbsp;Hyeongwoo Lee,&nbsp;Seonhye Eom,&nbsp;Gangseon Ji,&nbsp;Soo Ho Choi,&nbsp;Huitae Joo,&nbsp;Jinhyuk Bae,&nbsp;Ki Kang Kim,&nbsp;Hyeong-Ryeol Park,&nbsp;Kyoung-Duck Park\",\"doi\":\"10.1126/sciadv.adr0492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Controlling electron density in two-dimensional semiconductors is crucial for both comprehensive understanding of fundamental material properties and their technological applications. However, conventional electrostatic doping methods exhibit limitations, particularly in addressing electric field–induced drift and subsequent diffusion of electrons, which restrict nanoscale doping. Here, we present a tip-induced nanospectroscopic electric pulse modulator to dynamically control nanoscale electron density, thereby facilitating precise measurement of nano-optoelectronic behaviors within a MoS<sub>2</sub> monolayer. The tip-induced electric pulse enables nanoscale modulation of electron distribution as a function of electric pulse width. We simultaneously investigate spatially altering photoluminescence quantum yield at the nanoscale region. We model the extent of electron depletion region, confirming a minimum doping region with a radius of ∼265 nanometers for a 30-nanosecond pulse width. Our approach paves the way for engineering local electron density and in situ nano-optical characterization in two-dimensional materials, enabling an in-depth understanding of doping-dependent nano-optoelectronic phenomena.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adr0492\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adr0492\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr0492","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

控制二维半导体中的电子密度对于全面了解材料的基本特性及其技术应用至关重要。然而,传统的静电掺杂方法存在局限性,尤其是在解决电场诱导的电子漂移和随后的电子扩散方面,这限制了纳米尺度的掺杂。在这里,我们提出了一种尖端诱导纳米光谱电脉冲调制器,用于动态控制纳米级电子密度,从而促进 MoS 2 单层内纳米光电行为的精确测量。尖端诱导的电脉冲能以电脉冲宽度的函数对电子分布进行纳米级调制。同时,我们还研究了纳米尺度区域光致发光量子产率的空间变化。我们对电子耗尽区的范围进行了建模,确认了在 30 纳秒脉冲宽度下半径为 ∼ 265 纳米的最小掺杂区。我们的方法为二维材料中的局部电子密度工程和原位纳米光学表征铺平了道路,使人们能够深入了解依赖于掺杂的纳米光电现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical control of nanoscale electron density in atomically thin n-type semiconductors via nano-electric pulse generator
Controlling electron density in two-dimensional semiconductors is crucial for both comprehensive understanding of fundamental material properties and their technological applications. However, conventional electrostatic doping methods exhibit limitations, particularly in addressing electric field–induced drift and subsequent diffusion of electrons, which restrict nanoscale doping. Here, we present a tip-induced nanospectroscopic electric pulse modulator to dynamically control nanoscale electron density, thereby facilitating precise measurement of nano-optoelectronic behaviors within a MoS2 monolayer. The tip-induced electric pulse enables nanoscale modulation of electron distribution as a function of electric pulse width. We simultaneously investigate spatially altering photoluminescence quantum yield at the nanoscale region. We model the extent of electron depletion region, confirming a minimum doping region with a radius of ∼265 nanometers for a 30-nanosecond pulse width. Our approach paves the way for engineering local electron density and in situ nano-optical characterization in two-dimensional materials, enabling an in-depth understanding of doping-dependent nano-optoelectronic phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信