Xiaoqiuyan Zhang, Xin Zhang, Zhuocheng Zhang, Tianyu Zhang, Xingxing Xu, Fu Tang, Jing Yang, Jiakun Wang, Hui Jiang, Zhaoyun Duan, Yanyu Wei, Yubin Gong, Hui Zhang, Peining Li, Min Hu
{"title":"时域滤波太赫兹纳米镜观察光与物质的内在相互作用","authors":"Xiaoqiuyan Zhang, Xin Zhang, Zhuocheng Zhang, Tianyu Zhang, Xingxing Xu, Fu Tang, Jing Yang, Jiakun Wang, Hui Jiang, Zhaoyun Duan, Yanyu Wei, Yubin Gong, Hui Zhang, Peining Li, Min Hu","doi":"10.1021/acs.nanolett.4c03715","DOIUrl":null,"url":null,"abstract":"Terahertz (THz) technology holds great potential across diverse applications, including biosensing and information communications, but conventional far-field techniques are limited by diffraction. Near-field optical microscopy overcomes this barrier through a sharp tip that concentrates incident THz waves into nanometric volumes, detecting scattered near-field to reveal nanoscale optical properties. However, owing to the large THz wavelengths, resonant surface waves arising on the tip and cantilever obscure the intrinsic response. Here we combine near-field microscopy with THz time-domain spectroscopy and implement time-domain filtering with an elongated cantilever to eliminate this artifact, achieving intrinsic nanospectroscopy and nanoimaging. By applying this technique, we distinguish and characterize historical pigments of an ancient sculpture, such as vermilion and red lead, on the nanoscale. We also unravel deep-subwavelength localized resonance modes in THz optical antennas, demonstrating capabilities for THz nanophotonics. Our work advances THz nanoimaging and nanospectroscopy techniques to probe intrinsic nanoscale THz light-matter interactions.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Domain-Filtered Terahertz Nanoscopy of Intrinsic Light–Matter Interactions\",\"authors\":\"Xiaoqiuyan Zhang, Xin Zhang, Zhuocheng Zhang, Tianyu Zhang, Xingxing Xu, Fu Tang, Jing Yang, Jiakun Wang, Hui Jiang, Zhaoyun Duan, Yanyu Wei, Yubin Gong, Hui Zhang, Peining Li, Min Hu\",\"doi\":\"10.1021/acs.nanolett.4c03715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terahertz (THz) technology holds great potential across diverse applications, including biosensing and information communications, but conventional far-field techniques are limited by diffraction. Near-field optical microscopy overcomes this barrier through a sharp tip that concentrates incident THz waves into nanometric volumes, detecting scattered near-field to reveal nanoscale optical properties. However, owing to the large THz wavelengths, resonant surface waves arising on the tip and cantilever obscure the intrinsic response. Here we combine near-field microscopy with THz time-domain spectroscopy and implement time-domain filtering with an elongated cantilever to eliminate this artifact, achieving intrinsic nanospectroscopy and nanoimaging. By applying this technique, we distinguish and characterize historical pigments of an ancient sculpture, such as vermilion and red lead, on the nanoscale. We also unravel deep-subwavelength localized resonance modes in THz optical antennas, demonstrating capabilities for THz nanophotonics. Our work advances THz nanoimaging and nanospectroscopy techniques to probe intrinsic nanoscale THz light-matter interactions.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03715\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03715","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Time-Domain-Filtered Terahertz Nanoscopy of Intrinsic Light–Matter Interactions
Terahertz (THz) technology holds great potential across diverse applications, including biosensing and information communications, but conventional far-field techniques are limited by diffraction. Near-field optical microscopy overcomes this barrier through a sharp tip that concentrates incident THz waves into nanometric volumes, detecting scattered near-field to reveal nanoscale optical properties. However, owing to the large THz wavelengths, resonant surface waves arising on the tip and cantilever obscure the intrinsic response. Here we combine near-field microscopy with THz time-domain spectroscopy and implement time-domain filtering with an elongated cantilever to eliminate this artifact, achieving intrinsic nanospectroscopy and nanoimaging. By applying this technique, we distinguish and characterize historical pigments of an ancient sculpture, such as vermilion and red lead, on the nanoscale. We also unravel deep-subwavelength localized resonance modes in THz optical antennas, demonstrating capabilities for THz nanophotonics. Our work advances THz nanoimaging and nanospectroscopy techniques to probe intrinsic nanoscale THz light-matter interactions.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.